По вашему запросу ничего не найдено :(
Убедитесь, что запрос написан правильно, или посмотрите другие наши статьи:
img
Такой большой и интересный инструмент - а разворачивать как? В одной из предыдущих статей мы знакомились с таким инструментом разработчика, как ELK. Сегодня мы разберемся, как правильно подготовить этот комплекс для практической работы. Для начала напомним, что ELK это один из наиболее удобных инструментов разработчика, предназначенный для быстрого выявления неполадок в работе объемных программ путем сбора и анализа логов. Этот комплекс состоит из трех приложений: поисковика Elasticsearch, сборщика данных Logstash и визуализатора Kibana. Весь комплекс разрабатывается компанией Elastic. Ознакомимся с системными требованиями. На каждом из серверов в системе рекомендуется иметь не менее 8 физических ядер и не менее 48 Гб оперативной памяти. Кроме того, если данные планируется собирать с крупной системы, то объем внутренней памяти будем оценивать по принципу "чем больше тем лучше". 8 Тб это рекомендуемые требования, но этот показатель может варьироваться. Ну и, разумеется, чем выше скорость соединения между серверами - тем быстрее будет проводиться обработка информации. Рекомендуемый показатель - 1Гб/с. Система из трех таких серверов позволит обрабатывать до тысячи событий в секунду, собирать и отображать 95% данных за отдельные периоды времени (5 минут, сутки),хранить данные до 90 дней и обслуживать до 10 клиентов по протоколу HTTP одновременно. Поскольку все элементы данного решения реализованы на Java, первым делом нужно установить актуальную версию Oracle Java. Также рекомендуется изучить дополнительную информацию о компонентах ELK на предмет совместимости версий. Если на Вашей рабочей станции установлены Ubuntu или Debian, устанавливаем соединение с репозиторием для скачивания Oracle Java. Если вы пользуетесь CentOS то качаем программную среду на сервер с сайта разработчика. После того, как процесс установки завершится рекомендуется проверить актуальную версию с помощью соответствующей команды консоли. Если все хорошо, то это значит, что почва подготовлена, и можно переходить к следующему этапу А им станет скачивание и установка поискового инструмента Elasticsearch. Это также не вызовет особой сложности достаточно скопировать в систему публичный ключ репозитория, установить с ним соединение (пользователи Debian и Ubuntu могут столкнуться с отсутствием загрузочного пакета apt-transport-https его нужно будет установить дополнительно), скачать актуальную версию Elasticsearch и запустить процесс установки. Чтобы работа приложения была корректной, его стоит добавить в автозагрузку. Затем проверяем, штатно ли прошла установка, запустив программу. Итак, все запустилось нормально. Можно переходить к этапу конфигурирования Elasticsearch. Это не займет много времени нужно будет отредактировать пару строк в файле конфигурации /etc/elasticsearch/elasticsearch.yml. Во-первых, чтобы не собирать лишнюю информацию, указываем хост локального интерфейса, через который будет передавать данные Logstash (по умолчанию, данные собираются со всех сетевых интерфейсов), а во-вторых, указываем путь к хранилищу данных, откуда мы и будем с ними работать. Рекомендуется выделить под хранилище значительные объемы памяти чем сложнее проект, тем больше будут весить собираемые логи. После завершения процесса настройки перезапускаем и проверяем программу. Далее нас ждет установка веб-панели Kibana. Этот процесс почти не отличается от установки Elasticsearch, ключи репозиториев будут одинаковыми. В целом, все то же самое устанавливаем соединение с репозиторием, скачиваем, устанавливаем, добавляем в автозагрузку, запускаем, проверяем. Стоит обозначить, что приложение загружается довольно долго, поэтому проверку лучше осуществить через пару минут после отдачи команды на запуск приложения. Редактирование настроек Kibana можно осуществить через файл /etc/kibana/kibana.yml. Здесь нас интересует строка с указанием интерфейса, который будет "слушать" Kibana. Это могут быть все интерфейса, либо один определенный в данном случае нужно будет указать конкретный ip-адрес нужного сервера. Далее проверим сам веб-интерфейс, для этого указываем адрес - например, http://10.1.4.114:5601. Наконец, перейдем к этапу установки Logstash. Здесь все то же самое, только перед проверочным запуском программу нужно настроить. Можно отредактировать основной файл настроек /etc/logstash/logstash.yml, но рациональнее будет создать несколько файлов конфигурации в директории /etc/logstash/conf.d, чтобы группировать настройки по назначению. Создаем файлы input.conf и output.conf. В первом файле мы указываем порт, на который будем принимать информацию, а также параметры ssl, если в этом есть необходимость. Во втором файле указываем параметры передачи данных в Elasticsearch. Данные лучше передавать под указанным дополнительно индексом, также используя маску в виде даты. Также можно отключить функцию отправки данных в общий лог системы, чтобы не занимать место в хранилище дублированными фрагментами информации. Кроме этого, потребуется создать файл с параметрами обработки данных. Дело в том, что не всегда удобно работать с полным объемом, и приходится делать выборку ключевых данных. Создаем файл filter.confи указываем параметры, на основании которых будут фильтроваться необходимые данные. Также при необходимости можно настроить, например, корректное отображение даты или географического местоположения сервера, с которого будет поступать информация. Завершив конфигурирование, можно проверить работу программы, запустив ее и просмотрев внутренний файл лога /var/log/logstash/logstash-plain.log. Основной пакет программ установлен теперь осталось установить программы, которые будут отправлять данные, на сервера. Компания Elastic предлагает использовать Filebeat, но можно воспользоваться и альтернативными вариантами. Здесь процесс установки аналогичен предыдущим. Файл настроек по умолчанию позволяет сразу работать с программой, но можно и подредактировать его при необходимости. Если все сделано правильно, программный комплекс уже начал собирать логи. Следующим шагом будет открытие веб-интерфейса Kibana и настройка паттерна индекса, чтобы лог открывался в веб-интерфейсе по умолчанию, а в сохраняемых данных не было путаницы.
img
Алгоритм – это набор четко сформулированных инструкций, который применяется для решения конкретной задачи. Эти задачи вы можете решать любым удобным для вас способом.  Это значит, что ваш метод, который вы используете для решения задачи, может отличаться от моего, но при этом мы оба должны получить один и тот же результат.  Так как способ решения одной и той же задачи может быть не один, то должен существовать и способ оценить эти решения или алгоритмы с точки зрения оптимальности и эффективности (время, которое требуется для запуска/выполнения вашего алгоритма, и общий объем потребляемой памяти). Этот этап довольно важный для программистов. Его цель - помочь убедиться, что их приложения работают должным образом, и помочь написать чистый программный код.  И вот здесь на первый план выходит обозначение «О большое». «О большое» - это метрика, которая определяет эффективность алгоритма. Она позволяет оценить, сколько времени занимает выполнение программного кода с различными входными данными, и измерить, насколько эффективно этот программный код масштабируется по мере увеличения размера входных данных.  Что такое «О большое»? «О большое» показывает сложность алгоритма для наихудшего случая. Для описания сложности алгоритма здесь используются алгебраические выражения.  «О большое» определяет время выполнения алгоритма, показывая, как будет меняться оптимальность алгоритма по мере увеличения размера входных данных. Однако этот показатель не расскажет вам о том, насколько быстро работает ваш алгоритм.  «О большое» измеряет эффективность и оптимальность алгоритма, основываясь на временной и пространственной сложности.    Что такое временная и пространственная сложность? Один из самых основных факторов, который влияет на оптимальность и эффективность вашей программы – это оборудование, ОС и ЦП, которые вы используете.  Однако при анализе оптимальности алгоритма это не учитывается. Куда важнее учесть временную и пространственную сложность как функцию, которая зависит от размера входных данных.  Временная сложность алгоритма – это то, сколько времени потребуется для выполнения алгоритма в зависимости от размера входных данных. Аналогично пространственная сложность – это то, сколько пространства или памяти потребуется для выполнения алгоритма в зависимости от размера входных данных.  В данной статье мы рассмотрим временную сложность. Эта статья станет для вас своего рода шпаргалкой, которая поможет вам понять, как можно рассчитать временную сложность для любого алгоритма. Почему временная сложность зависит от размера входных данных? Для того, чтобы полностью понять, что же такое «зависимость от входных данных», представьте, что у вас есть некий алгоритм, который вычисляет сумму чисел, основываясь на ваших входных данных. Если вы ввели 4, то он сложит 1+2+3+4, и на выходе получится 10; если вы ввели 5, то на выходе будет 15 (то есть алгоритм сложил 1+2+3+4+5). const calculateSum = (input) => {  let sum = 0;  for (let i = 0; i <= input; i++) {    sum += i;  }  return sum; }; В приведенном выше фрагменте программного кода есть три оператора: Давайте посмотрим на картинку выше. У нас есть три оператора. При этом, так как у нас есть цикл, то второй оператор будет выполняться, основываясь на размере входных данных, поэтому, если на входе алгоритм получает 4, то второй оператор будет выполняться четыре раза. А значит, в целом алгоритм выполнится шесть (4+2) раз.  Проще говоря, алгоритм будет выполняться input+2 раза; input может быть любым числом. Это говорит о том, что алгоритм выражается в терминах входных данных. Иными словами, это функция, которая зависит от размера входных данных.  Для понятия «О большое» есть шесть основных типов сложностей (временных и пространственных): Постоянное время: O1 Линейное время: On Логарифмическое время: On log n  Квадратичное время: On2 Экспоненциальное время: O2n Факториальное время: On! Прежде чем мы перейдем к рассмотрению всех этих временных сложностей, давайте посмотрим на диаграмму временной сложности «О большого».  Диаграмма временной сложности «О большого» Диаграмма «О большого» - это асимптотические обозначение, которое используется для выражения сложности алгоритма или его оптимальности в зависимости от размера входных данных.  Данная диаграмма помогает программистам определить сценарий наихудшего случая, а также оценить время выполнения и объем требуемой памяти.  Следующий график иллюстрирует сложность «О большого»:  Глядя на приведенную выше диаграмму, можно определить, что O1 – постоянное время выполнения алгоритма, является наилучшим вариантом. Это означает, что ваш алгоритм обрабатывает только один оператор без какой-либо итерации. Дальше идет Olog n , что тоже является неплохим вариантом, и другие: O1 – отлично/наилучший случай Olog n  – хорошо On – удовлетворительно On log n  – плохо On2, O2n, On! – ужасно/наихудший случай Теперь вы имеете представление о различных временных сложностях, а также можете понять, какие из них наилучшие, хорошие или удовлетворительные, а какие плохие и наихудшие (плохих и наихудших временных сложностей следует избегать). Следующий вопрос, который может прийти на ум: «какой алгоритм какую сложность имеет?» И это вполне логичный вопрос, ведь эта статья задумывалась как шпаргалка. ?  Когда ваши расчеты не зависят от размера входных данных, то это постоянная временная сложность - O1. Когда размер входных данных уменьшается в два раза, например, при итерации, обработке рекурсии и т.д., то это логарифмическая временная сложность - Olog n . Когда у вас один цикл в алгоритме, то это линейная временная сложность - On. Когда у вас есть вложенные циклы, то есть цикл в цикле, то это квадратичная временная сложность - On2. Когда скорость роста удваивается при каждом добавлении входных данных, то это экспоненциальная временная сложность - O2n. Давайте перейдем к описанию временных сложностей. Для каждой будут приведены примеры. Отмечу, что в примерах я использовал JavaScript, но если вы понимаете принцип и что из себя представляет каждая временная сложность, то не имеет значения, какой язык программирования вы выберите.  Примеры временных сложностей «О большого» Постоянное время: O1 Когда алгоритм не зависит от размера входных данных n, то говорят, что он имеет постоянную временную сложность порядка O1. Это значит, что время выполнения алгоритма всегда будет одним и тем же, независимо от размера входных данных.  Допустим, что задача алгоритма – вернуть первый элемент массива. Даже если массив состоит из миллиона элементов, временная сложность будет постоянной, если использовать следующий подход для решения задачи: const firstElement = (array) => {  return array[0]; }; let score = [12, 55, 67, 94, 22]; console.log(firstElement(score)); // 12 Приведенная выше функция выполняет лишь один шаг, а это значит, что функция работает за постоянное время, и ее временная сложность O1.  Однако, как уже было сказано, разные программисты могут найти разные способы решения задачи. Например, другой программист может решить, что сначала надо пройти по массиву, а затем уже вернуть первый элемент: const firstElement = (array) => {  for (let i = 0; i < array.length; i++) {    return array[0];  } }; let score = [12, 55, 67, 94, 22]; console.log(firstElement(score)); // 12 Это просто пример – вряд ли кто-то будет решать эту задачу таким способом. Но здесь уже есть цикл, а значит алгоритм не будет выполняться за постоянное время, здесь в игру вступает линейное время с временной сложностью On. Линейное время: On Линейная временная сложность возникает, когда время работы алгоритма увеличивается линейно с размером входных данных. Когда функция имеет итерацию по входному значению n, то говорят, что она имеет временную сложность порядка On. Допустим, алгоритм должен вычислить и вернуть факториал любого числа, которое вы введете. Это значит, что если вы введете число 5, то алгоритм должен выполнить цикл и умножить 1·2·3·4·5, а затем вывести результат – 120: const calcFactorial = (n) => {  let factorial = 1;  for (let i = 2; i <= n; i++) {    factorial = factorial * i;  }  return factorial; }; console.log(calcFactorial(5)); // 120 Тот факт, что время выполнения алгоритма зависит от размера входных данных, подразумевает наличие линейной временной сложности порядка On. Логарифмическое время: Olog n  Это чем-то похоже на линейную временную сложность. Однако здесь время выполнения зависит не от размера входных данных, а от их половины. Когда размер входных данных уменьшается на каждой итерации или шаге, то говорят, что алгоритм имеет логарифмическую временную сложность.  Такой вариант считается вторым сверху списка лучших, так как ваша программа работает лишь с половиной входных данных. И при всем при этом, размер входных данных уменьшается с каждой итерацией.  Отличный пример – функция бинарного поиска, которая делит отсортированный массив, основываясь на искомом значения.  Допустим, что нам надо найти индекс определенного элемента в массиве с помощью алгоритма бинарного поиска: const binarySearch = (array, target) => {  let firstIndex = 0;  let lastIndex = array.length - 1;  while (firstIndex <= lastIndex) {    let middleIndex = Math.floor((firstIndex + lastIndex) / 2);    if (array[middleIndex] === target) {      return middleIndex;    }    if (array[middleIndex] > target) {      lastIndex = middleIndex - 1;    } else {      firstIndex = middleIndex + 1;    }  }  return -1; }; let score = [12, 22, 45, 67, 96]; console.log(binarySearch(score, 96)); Приведенный выше программный код демонстрирует бинарный поиск. Судя по нему, вы сначала получаете индекс среднего элемента вашего массива, дальше вы сравниваете его с искомым значением и, если они совпадают, то вы возвращаете этот индекс. В противном случае, если они не совпали, вы должны определить, искомое значение больше или меньше среднего, чтобы можно было изменить первый и последний индекс, тем самым уменьшив размер входных данных в два раза. Так как на каждой такой итерации размер входных данных уменьшается в два раза, то данный алгоритм имеет логарифмическую временную сложность порядка Olog n . Квадратичное время: On2 Когда в алгоритме присутствуют вложенные циклы, то есть цикл в цикле, то временная сложность уже становится квадратичной, и здесь нет ничего хорошего.  Представьте, что у вас есть массив из n элементов. Внешний цикл будет выполняться n раз, а внутрениий – n раз для каждой итерации внешнего цикла, и, соответственно, общее количество итераций составит n2. Если в массиве было 10 элементов, то количество итераций будет 100 (102). Ниже приведен пример, где сравниваются элементы для того, чтобы можно было вывести индекс, когда найдутся два одинаковых: const matchElements = (array) => {  for (let i = 0; i < array.length; i++) {    for (let j = 0; j < array.length; j++) {      if (i !== j && array[i] === array[j]) {        return `Match found at ${i} and ${j}`;      }    }  }  return "No matches found ?"; }; const fruit = ["?", "?", "?", "?", "?", "?", "?", "?", "?", "?"]; console.log(matchElements(fruit)); // "Match found at 2 and 8" В этом примере есть вложенный цикл, а значит, здесь будет квадратичная временная сложность порядка On2.  Экспоненциальное время: O2n Экспоненциальная временная сложность появляется, когда скорость роста удваивается с каждым добавлением входных данных n, например, когда вы обходите все подмножества входных элементов. Каждый раз, когда единицу входных данных увеличивают на один, то количество итераций, которые выполняет алгоритм, увеличиваются в два раза.  Хороший пример – рекурсивная последовательность Фибоначчи. Допустим, дано число, и необходимо найти n-ый элемент последовательности Фибоначчи.  Последовательность Фибоначчи – это математическая последовательность, в которой каждое число является суммой двух предыдущих; первые два числа – 0 и 1. Третье число – 1, четвертое – 2, пятое – 3 и т.д. (0, 1, 1, 2, 3, 5, 8, 13, …). Соответственно, если вы введете число 6, то выведется 6-й элемент в последовательности Фибоначчи – 8: const recursiveFibonacci = (n) => {  if (n < 2) {    return n;  }  return recursiveFibonacci(n - 1) + recursiveFibonacci(n - 2); }; console.log(recursiveFibonacci(6)); // 8 Приведенный выше алгоритм задает скорость роста, которая удваивается каждый раз, когда добавляются входные данные. А значит, данный алгоритм имеет экспоненциальную временную сложность порядка O2n. Заключение Из данной статьи вы узнали, что такое временная сложность, как определить оптимальность алгоритма с помощью «О большого», а также рассмотрели различные временные сложности с примерами. 
img
При написании некоторых скриптов бывает нужно обратиться какому-либо ресурсу. Это может быть HTTP/HTTPS запрос какой-нибудь HTML странички сайта, FTP запрос на скачивание файла или же, это может быть GET/POST запрос к удалённому ресурсу, для передачи на него какой-либо информации. Для этих целей в роутерах MikroTik предусмотрен инструмент Fetch, о нём и поговорим. Инструмент Fetch позволяет настроить отправку HTTP и FTP запросов к сетевому ресурсу, чтобы скопировать с, или же загрузить на него определённые данеые (web-страничка, файл). Поддержка HTTPS включена по умолчанию, проверка сертификатов, предъявляемых сетевыми ресурсами при запросе, не осуществляется. Включить проверку цепочки сертификации можно с помощью опции check-certificate. Чтобы начать работу с инструментом Fetch, введите команду: /tool fetch Далее нужно задавать параметры ресурса, к которому Вы хотите обратиться, метод обращения и данные, которые нужно получить или загрузить на этот ресурс. Доступны следующие параметры: address - задаёт IP адрес ресурса, к которому необходимо обратиться; ascii - включает поддержку ASCII (по умолчанию - no); check-certificate - включает проверку цепочки сертификации удаленного ресурса; dst-path - название файла, который нужно скачать и полный путь к нему на удаленном ресурсе; host - доменное имя ресурса, к которому нужно обратиться. Например - shareit.merionet.ru; http-method - метод HTTP обращения. Доступны следующие методы: get, post, put, delete. По умолчанию используется get; http-data - данные, которые нужно отправить на удаленный ресурс, при использовании методов put и post; http-content-type - идентификатор данных, которые нужно отправить на удаленный ресурс в формате MIME. По умолчанию - application/x-www-form-urlencoded; keep-result - если данный параметр активирован, то будет создан входной файл; mode - задаёт протокол, по которому будет осуществляться соединение с удаленным ресурсом. Можно задать http, https, ftp или tftp; password - задаёт пароль который нужен для аутентификации на удаленном ресурсе. (Используйте только если удаленный ресурс требует аутентификации подключения); port - порт, по которому будет осуществляться соединение; src-path - название файла, который нужно загрузить на удаленный ресурс; upload - если данный параметр активирован, то инструмент fetch будет использоваться именно для загрузки локального файла на удаленный ресурс. При этом требуется, чтобы были указаны src-path и dst-path файла; url - URL путь к файлу. Может быть использовано вместо address или src-path; user - имя пользователя, которое нужно ввести для аутентификации на удаленном ресурсе (используйте только если удаленный ресурс требует аутентификации подключения); Давайте рассмотрим несколько use кейсов, когда Вам может пригодиться инструмент fetch. Скачивание файла с удаленного ресурса В статье про защиту роутера MikroTik методом превентивного блокирования адресов из "черных" списков мы уже прибегали к этому методу. Для этого мы писали такую команду: /tool fetch address=www.squidblacklist.org host=www.squidblacklist.org mode=http src-path=/downloads/drop.malicious.rsc В данном случае, мы обращаемся к ресурсу www.squidblacklist.org по протоколу http и скачиваем файл /downloads/drop.malicious.rsc Допустим, мы имеем дело с FTP сервером, требующим аутентификации, тогда запрос может быть таким: /tool fetch address=192.168.11.48 src-path=conf.rsc user=admin mode=ftp password=samplepass dst-path=sample.rsc port=21 host="" keep-result=yes Можно также указать URL, по которому доступен нужный файл для скачивания: /tool fetch url="https://wiki.merionet.ru/rukovodstvo-administratora-freepbx-na-russkom-yazyke/Rukovodstvo_Administratora_FreePBX_na_russkom_yazyke.pdf" mode=http Загрузка файлов на удаленный сервер может быть нужна для автоматизации процесса резервного копирования конфигурации роутера Ниже приведен пример команды для отправки файла с бэкапом по протоколу FTP, на удаленный сервер по адресу 192.168.11.56, который требует аутентификации: /tool> fetch address=192.168.11.56 src-path=cnfig.rsc user=admin mode=ftp password=samplepass dst-path=backup.rsc upload=yes Отправление информации на удаленный сервер С помощью инструмента fetch можно также отправлять информацию на удаленный сервер, используя HTTP запросы. Например, ниже показан пример того, как можно через POST запрос отправить json массив данных на удаленный сервер: /tool fetch http-method=post http-content-type="application/json" http-data="{ "as": "AS16509 Amazon.com, Inc.", "city": "Boardman", "country": "United States", "countryCode": "US", "isp": "Amazon", "lat": 45.8696, "lon": -119.688, "org": "Amazon", "query": "54.148.84.95", "region": "OR", "regionName": "Oregon", "status": "success", "timezone": "America/Los_Angeles", "zip": "97818" }" url="http://locator.loc/index.php" Сохранять результат как переменную В версии RouterOS v6.43, появилась возможность сохранить результат команды fetch в переменную. Это может быть полезно, например, для написания скриптов, которые производят какие-либо действия в зависимости от того, какой был ответ на HTTP запрос. Например, ниже приведен пример скрипта, который отсылает письмо SERVICE FAILED, если при запросе страницы PHP (check.php) возвратился “0” и SERVICE RUNNING, если запрос был успешно обработан. { :local result [/tool fetch url=http://192.168.11.56/check.php as-value output=user]; :if ($result->"status" = "finished") do={ :if ($result->"data" = "0") do={ /tool e-mail send to="mnadmin@mndomain.ru" subject="$[/system identity get name] export" body="$[/system clock get date] SERVICE FAILED; } else={ /tool e-mail send to="mnadmin@mndomain.ru" subject="$[/system identity get name] export" body="$[/system clock get date] SERVICE RUNNING; } } } Предварительно, нужно чтобы был настроен почтовый сервер - tool e-mail> set server=192.168.1.34 set port=25 from=”mnmikrotik@mndomain.ru” Кстати, в WinBox нет отдельной реализации инструмента fetch. Однако, мы можем использовать его, когда пишем скрипты через инструмент Scripts. Например, можно туда добавить скрипт, который мы привели выше:
ВЕСЕННИЕ СКИДКИ
40%
50%
60%
До конца акции: 30 дней 24 : 59 : 59