По вашему запросу ничего не найдено :(
Убедитесь, что запрос написан правильно, или посмотрите другие наши статьи:
img
Привет, друг! Сегодня в статье мы расскажем, как рассчитать IP-адрес подсети с помощью инструмента ipcalc. При управлении сетью, несомненно, придется иметь дело с подсетями. Некоторые сетевые администраторы могут довольно быстро выполнять двоичные вычисления, чтобы определить маску подсети. Тем не менее, другим может потребоваться некоторая помощь, и здесь инструмент ipcalc очень пригодится. Ipcalc на самом деле делает намного больше - он принимает на вход IP-адрес и маску сети и на выходе вы получаете адрес сети, Cisco wildcard маску, широковещательный адрес, минимальный и максимальный хост и общее количество хостов. Вы также можете использовать его в качестве учебного пособия для представления результатов подсетей в простых для понимания двоичных значениях. Некоторые из применений ipcalc: Проверить IP-адрес Показать рассчитанный широковещательный адрес Отображение имени хоста, определенного через DNS Показать сетевой адрес или префикс Как установить ipcalc в Linux Чтобы установить ipcalc, просто запустите одну из приведенных ниже команд в зависимости от используемого дистрибутива Linux. $ sudo apt install ipcalc Пакет ipcalc должен автоматически устанавливаться в CentOS / RHEL / Fedora, и он является частью пакета initscripts, но если по какой-то причине он отсутствует, вы можете установить его с помощью: # yum install initscripts #RHEL/CentOS # dnf install initscripts #Fedora Как использовать ipcalc в Linux Ниже вы можете увидеть несколько примеров использования ipcalc. Получить информацию о сетевом адресе: # ipcalc 192.168.20.0 Результат примера: Address: 192.168.20.0 11000000.10101000.00010100. 00000000 Netmask: 255.255.255.0 = 24 11111111.11111111.11111111. 00000000 Wildcard: 0.0.0.255 00000000.00000000.00000000. 11111111 => Network: 192.168.20.0/24 11000000.10101000.00010100. 00000000 HostMin: 192.168.20.1 11000000.10101000.00010100. 00000001 HostMax: 192.168.20.254 11000000.10101000.00010100. 11111110 Broadcast: 192.168.20.255 11000000.10101000.00010100. 11111111 Hosts/Net: 254 Class C, Private Internet Рассчитайте подсеть для 192.168.20.0/24. # ipcalc 192.168.20.0/24 Результат: Address: 192.168.20.0 11000000.10101000.00010100. 00000000 Netmask: 255.255.255.0 = 24 11111111.11111111.11111111. 00000000 Wildcard: 0.0.0.255 00000000.00000000.00000000. 11111111 => Network: 192.168.20.0/24 11000000.10101000.00010100. 00000000 HostMin: 192.168.20.1 11000000.10101000.00010100. 00000001 HostMax: 192.168.20.254 11000000.10101000.00010100. 11111110 Broadcast: 192.168.20.255 11000000.10101000.00010100. 11111111 Hosts/Net: 254 Class C, Private Internet Рассчитайте одну подсеть с 10 хостами: # ipcalc 192.168.20.0 -s 10 Результат: Address: 192.168.20.0 11000000.10101000.00010100. 00000000 Netmask: 255.255.255.0 = 24 11111111.11111111.11111111. 00000000 Wildcard: 0.0.0.255 00000000.00000000.00000000. 11111111 => Network: 192.168.20.0/24 11000000.10101000.00010100. 00000000 HostMin: 192.168.20.1 11000000.10101000.00010100. 00000001 HostMax: 192.168.20.254 11000000.10101000.00010100. 11111110 Broadcast: 192.168.20.255 11000000.10101000.00010100. 11111111 Hosts/Net: 254 Class C, Private Internet 1. Requested size: 10 hosts Netmask: 255.255.255.240 = 28 11111111.11111111.11111111.1111 0000 Network: 192.168.20.0/28 11000000.10101000.00010100.0000 0000 HostMin: 192.168.20.1 11000000.10101000.00010100.0000 0001 HostMax: 192.168.20.14 11000000.10101000.00010100.0000 1110 Broadcast: 192.168.20.15 11000000.10101000.00010100.0000 1111 Hosts/Net: 14 Class C, Private Internet Needed size: 16 addresses. Used network: 192.168.20.0/28 Unused: 192.168.20.16/28 192.168.20.32/27 192.168.20.64/26 192.168.20.128/25 Если вы хотите убрать двоичный вывод, вы можете использовать опцию -b, как показано ниже. # ipcalc -b 192.168.20.100 Результат: Address: 192.168.20.100 Netmask: 255.255.255.0 = 24 Wildcard: 0.0.0.255 => Network: 192.168.20.0/24 HostMin: 192.168.20.1 HostMax: 192.168.20.254 Broadcast: 192.168.20.255 Hosts/Net: 254 Class C, Private Internet Чтобы узнать больше об использовании ipcalc, вы можете использовать: # ipcalc --help # man ipcalc
img
pfSense это маршрутизатор и межсетевой экран с открытым исходным кодом на основе FreeBSD. PfSense подходит для малых и средних компаний и предоставляет недорогое специализированное решение межсетевого экрана и маршрутизатора для физических и виртуальных компьютерных сетей. /p> Программа, которую можно установить, как на физическую, так и на виртуальную машину, предоставляет широкий спектр функций, которые почти схожи с платными решениями. ПО так же поддерживает решения сторонних разработчиков такие, как Squid, Snort и другие, благодаря которым функционал еще больше расширяется. Плюсы использования межсетевого экрана pfSense: Не требует высокого уровня технических знаний; Имеет графический интерфейс, который облегчает конфигурирование, обновление и добавление плагинов; Низкая цена; Не привязана к конкретному вендору; Несколько вариантов развертывания включая физические сервера, компьютеры или виртуальные хосты. Стандартный набор функционала следующий: Межсетевой экран; Беспроводная точка доступа; Маршрутизатор; Точка доступа VPN; DHCP/DNS сервер; Балансировка нагрузки; Ограничение трафика (traffic shaping); Фильтрация веб контента. Установка pfSense pfSense сама по себе является операционной системой, и его нельзя установить поверх другой ОС. Нужно либо резервировать целиком физический компьютер, либо развертывать его как виртуальную машину в физической системе, такой как сервер. Виртуальное развертывание устраняет необходимость в дополнительном компьютере в сети. В этой статье мы покажем вам, как установить программное обеспечение pfSense на виртуальной машине на Ubuntu или CentOS. Для этого нужна машина, поддерживающая виртуализацию. Сначала мы создадим виртуальную машину, на которой потом установим pfSense. Можно использовать Virtual Box, Virtual Ware, KVM или любое другое совместимое ПО виртуализации. В этом руководстве мы будем работать с Virtual Box. Так как ПО устанавливается на Virtual Box, процесс установки pfSense одинаковый независимо от операционной системы хоста. Это означает, что вы будете выполнять те же действия на Ubuntu, CentOS и других дистрибутивах Linux, macOS или Windows. Установка pfSense on Ubuntu and CentOS через VirtualBox Предварительные требования: Физическая или виртуальная машина с установленной Ubuntu или CentOS; Пользователь с правом sudo; Программа виртуализации: Virtual Box, VM Ware, KVM, Virtuozzo, Xen и т.д. Две сетевые карты; Шаг 1: Скачиваем образ pfSense При создании и настройке виртуальной машины потребуется ISO образ pfSense, который рекомендуется загрузить с официального веб-сайта перед началом настройки виртуальной машины. Страница загрузки предлагает различные опции, и конкретный файл зависит от аппаратного обеспечения компьютера и процесса установки. Выберите архитектуру, тип файла установщика и соответствующее зеркало для загрузки; В нашем случае мы выберем архитектуру AMD64 (64 бит), установщик CD-образа (ISO) и зеркало в Нью-Йорке, США; Щелкните на Download и обратите внимание на расположение файла. Обычно файл бывает в формате gzip (gz), и его нужно будет разархивировать. Обратите внимание на путь к файлу, так как этот путь понадобится после настройки виртуального компьютера. Шаг 2: Создание и настройка виртуальной машины под pfSense На хостовой машине запустите Virtual Box (или любой другой гипервизор) и нажмите на New: Введите название ВМ, выберите тип ОС и версию. В этом руководстве выбрали следующие настройки: Название: pfsvm; Тип ОС: BSD; Версия: FreeBSD (64-бит); Нажимаем кнопку Next Далее нужно выбрать объем оперативной памяти. Чтобы выбрать рекомендуемый объем просто нажмите Next. Мы выбрали рекомендуемые 1Гб от доступных 4 Гб. Следующий шаг создание виртуального жесткого диска. Рекомендуется 16Гб, но это значение можно менять в зависимости от доступных ресурсов. Выбираем Create a virtual disk now, нажимаем Create. Тип файла виртуально диска выбираем VMDK и нажимаем Next. Выбираем Dynamically allocated storage и нажимаем Next. Задаем название виртуальному диску и размер. В нашем случае мы оставляем предлагаемое название и рекомендуемый размер и нажимаем Create. Далее программа создаст виртуальную машину и вернет нас на начальный экран гипервизора. Далее покажем, как настроить сеть, сетевые карты и выбор загрузочного диска. Для начала нужно создать виртуальную сеть. Шаг 3: Создание и настройка сети в VirtualBox В Virtual Box выбираем меню File пункт Preferences: Если уже имеется виртуальная сеть, как на скриншоте ниже, то можно использовать ее, в противном случае нужно создать новую сеть: Добавляем новую NAT сеть. Проверяем активна ли созданная сеть. Кнопка с шестерёнкой позволяет менять конфигурацию сети. Мы все оставим по умолчанию и нажимаем OK. Далее нужно создать внутреннюю сеть для виртуальной среды. Для этого в меню File выбираем Host Network Manager. Тут надо нажать на Create, а затем Properties чтобы задать IP адреса для внутренней локальной сети vboxnet0. Убедитесь, что DHCP включен и правильно настроен: Итак, мы создали нужные сети, теперь нужно настроить сетевые карты виртуальной машины. WAN адаптер будет подключен через NAT, LAN подключим к ранее созданному vboxnet0. Шаг 4: Настройка сетевых интерфейсов pfSense Откройте настройки виртуальной машины выбрав ее, а затем кликнув на шестеренку (Settings). Затем перейдите на Network. Убедитесь, что Adapter1 включен и из выпадающего списка Attached to: выберите NatNetwork. Так как у нас всего одна сеть, она установлена по умолчанию, но, если у вас таких сетей много, нужно выбрать ту, которую планировали использовать для pfSense. Adapter1 у нас будет интерфейсом, смотрящим в интернет. Затем настроим внутреннюю сеть. Для этого выбираем Adapter2, включаем его. Из выпадающего списка выбираем Host-only adapter и указываем название созданной сети: vboxnet0. Можно выбирать и другие опции в зависимости от ваших требований. Шаг 5: Настройка VM для загрузки с образа диска Для этого в Настройках виртуальной машины выбираем Storage. Щелкаем на иконке Empty CD. Кликнув на иконку диска со стрелочкой выбираем Choose Virtual Optical Disk File: Указываем путь к скачанному ранее образу pfSense и нажимаем OK: Шаг 6: Установка pfSense на виртуальную машину Выбираем созданную виртуальную машину и запускаем ее: Машина запуститься с образа диска. В этом руководстве все значения оставим по умолчанию их можно будет менять после установки. Принимаем условия лицензионного соглашения (как правило, не читая) Нажимаем OK для продолжения установки со значениями по умолчанию Выбираем раскладку клавиатуры. Нажимаем Enter для выбора значения по умолчанию (US) Выбираем метод разбиения диска. Оставляем рекомендуемое авто разбиение: Дождитесь конца установки: После завершения установки предложат изменить некоторые конфигурации вручную. Выбираем No: Установка завершена и для продолжения нужно перезагрузить систему. Но перед этим нужно извлечь диск. Для этого в меню Devices выбираем Remove disk from virtual drive. Щелкните Force Unmount: Затем, смело можно перезагружать машину. Шаг 7: Вход и настройка pfSense Если установка прошла успешно - после перезагрузки вы должны увидеть экран, как на скриншоте: Если так, уже можно приступать к настройке брандмауэра. Система дает три способа конфигурации: Через командную строку, выбирая номера пунктов настроек; Зайдя на веб-интерфейс с другого компьютера в той же сети; Зайдя на веб-интерфейс через интернет по WAN IP. Шаг 8: Вход на веб-интерфейс pfSense Настройка через графический веб-интерфейс обеспечивает наиболее простой способ. Для доступа к pfSense через веб-браузер необходим компьютер в той же сети. Откройте веб-браузер и введите IP-адрес, указанный при настройке локальной сети виртуальной среды. В нашем случае это 192.168.1.1 Введите имя пользователя admin и пароль pfSense и нажмите Sign in. Вы перейдете к мастеру, который поможет вам выполнить начальные настройки. Следуйте инструкциям и при необходимости измените их. Начальные настройки включают изменение пароля учетной записи администратора и конфигурации интерфейса LAN. После завершения нажмите кнопку Finish. После нажатия кнопки Finish необходимо принять соглашение некоммерческом использовании, после чего появится панель мониторинга состояния pfSense. После завершения начальной настройки можно получить доступ к меню и изменить почти все параметры, включая настройку интерфейсов, брандмауэр, VPN и другие функций.
img
Новое в IPv6-это автоконфигурация, которая является почти "мини-DHCP" - сервером, и некоторые протоколы были удалены или изменены. Точно так же, как IPv4, хосты, настроенные на IPv6, должны узнать MAC-адрес других устройств, но мы больше не используем ARP, он был заменен протоколом под названием NDP (Neighbour Discovery Protocol). Теоретические основы Помимо изучения MAC-адресов, NDP используется для решения ряда задач: Router Discovery (обнаружение маршрутизаторов): NDP используется для изучения всех доступных маршрутизаторов IPv6 в подсети. Обнаружение MAC-адресов: после того, как хост выполнил проверку DAD и использует IPv6 адрес он должен будет обнаружить MAC адреса хостов с которыми он хочет общаться. DAD (обнаружение дубликатов адресов): каждый хост IPv6 будет ждать, чтобы использовать свой адрес, если только он не знает, что ни одно другое устройство не использует тот же адрес. Этот процесс называется DAD, и NDP делает это за нас. SLAAC: NDP используется, чтобы узнать, какой адрес и длину префикса должен использовать хост. Мы рассмотрим все задачи, чтобы увидеть, как они работают. Начнем с обнаружения маршрутизатора. Когда хост настроен на IPv6, он автоматически обнаруживает маршрутизаторы в подсети. Хост IPv6 может использовать NDP для обнаружения всех маршрутизаторов в подсети, которые могут использоваться в качестве шлюза по умолчанию. В принципе, хост отправляет сообщение с запросом, есть ли там какие-либо маршрутизаторы, и маршрутизаторы ответят. Используются два сообщения: RS (Router Solicitation), который отправляется на "все маршрутизаторы ipv6" FF02::2 multicast адрес. RA (Router Advertisement) отправляется маршрутизатором и включает в себя его link-local IPv6 адрес. Когда хост отправляет запрос маршрутизатору, маршрутизатор будет отвечать на одноадресный адрес хоста. Маршрутизаторы также будут периодически отправлять рекламные объявления маршрутизаторов для всех заинтересованных сторон, они будут использовать для этого адрес FF02:: 1 "все узлы". Большинство маршрутизаторов также будут иметь global unicast адрес, настроенный на интерфейсе, в этом случае хосты будут узнавать не только о link-local адресе, но и о префиксе, который используется в подсети. Этот префикс можно использовать для SLAAC. NPD также используется в качестве замены ARP. Для этого он использует два вида сообщений: NS (Neighbor Solicitation) NA (Neighbor Advertisement) Запрос соседа работает аналогично запросу ARP, он запрашивает определенный хост для своего MAC-адреса, и объявление соседа похоже на ответ ARP, поскольку оно используется для отправки MAC-адреса. В основном это выглядит так: Всякий раз, когда хост посылает запрос соседу, он сначала проверяет свой кэш, чтобы узнать, знает ли он уже MAC-адрес устройства, которое он ищет. Если его там нет, он пошлет соседу запрос. Эти соседние запрашивающие сообщения используют solicited-node multicast адрес запрашиваемого узла. Помимо обнаружения MAC-адресов, сообщения NS и NA также используются для обнаружения дубликатов IPv6-адресов. Прежде чем устройство IPv6 использует одноадресный адрес, оно выполнит DAD (обнаружение дубликатов адресов), чтобы проверить, не использует ли кто-то другой тот же IPv6-адрес. Если адрес используется, хост не будет его использовать. Вот как это выглядит: Host1 был настроен с IPv6-адресом 2001:1:1:1::2, который уже используется Host2. Он будет посылать запрос соседства, но поскольку host2 имеет тот же IPv6-адрес, он ответит объявлением соседа. Host1 теперь знает, что это дубликат IPv6-адреса. Эта проверка выполняется для всех одноадресных адресов, включая link-local адреса. Это происходит, когда вы настраиваете их и каждый раз, когда интерфейс находится в состоянии "up". Последний NPD, который мы рассмотрим, - это SLAAC, которая позволяет хостам автоматически настраивать свой IPv6-адрес. Для IPv4 мы всегда использовали DHCP для автоматического назначения IP-адреса, шлюза по умолчанию и DNS-сервера нашим хостам, и эта опция все еще доступна для IPv6 (мы рассмотрим ее ниже). DHCP прекрасная "вещь", но недостатком является то, что вам нужно установить DHCP-сервер, настроить пул с диапазонами адресов, шлюзами по умолчанию и DNS-серверами. Когда мы используем SLAAC, наши хосты не получают IPv6-адрес от центрального сервера, но он узнает префикс, используемый в подсети, а затем создает свой собственный идентификатор интерфейса для создания уникального IPv6-адреса. Вот как работает SLAAC: Хост сначала узнает о префиксе с помощью сообщений NDS RS RA. Хост принимает префикс и создает идентификатор интерфейса, чтобы создать уникальный IPv6-адрес. Хост выполняет DAD, чтобы убедиться, что IPv6-адрес не используется никем другим. Маршрутизаторы Cisco будут использовать EUI-64 для создания идентификатора интерфейса, но некоторые операционные системы будут использовать случайное значение. Благодаря SLAAC хост будет иметь IPv6-адрес и шлюз, но один элемент все еще отсутствует...DNS-сервер. SLAAC не может помочь нам с поиском DNS-сервера, поэтому для этого шага нам все еще требуется DHCP. DHCP для IPv6 называется DHCPv6 и поставляется в двух формах: Stateful Stateless Мы рассмотрим DHCPv6 чуть позже, но для SLAAC нам нужно понять, что такое stateless DHCPv6. Обычно DHCP-сервер отслеживает IP-адреса, которые были арендованы клиентами, другими словами, он должен сохранять "состояние" того, какие IP-адреса были арендованы и когда они истекают. Сервер stateless DHCPv6 не отслеживает ничего для клиентов. Он имеет простую конфигурацию с IPv6-адресами нескольких DNS-серверов. Когда хост IPv6 запрашивает у сервера DHCPv6 IPv6-адрес DNS-сервера, он выдает этот адрес, и все. Поэтому, когда вы используете SLAAC, вам все еще нужен stateless DHCPv6, чтобы узнать о DNS-серверах. Теперь вы узнали все задачи, которые NPD выполняет для нас: Router Discovery MAC Address Discovery Duplicate Address Detection Stateless Address Autoconfiguration Настройка на Cisco Давайте посмотрим на NPD на некоторых маршрутизаторах, чтобы увидеть, как он работает в реальности. Будет использоваться следующая топология для демонстрации: Будем использовать OFF1 в качестве хоста, который будет автоматически настраиваться с помощью SLAAC и OFF2 в качестве маршрутизатора. 2001:2:3:4//64 это префикс, который мы будем использовать. Давайте сначала настроим OFF2: OFF2(config)#ipv6 unicast-routing Прежде чем OFF2 будет действовать как маршрутизатор, нам нужно убедиться, что включена одноадресная маршрутизация IPv6. Теперь давайте настроим IPv6 адрес на интерфейсе: OFF2(config)#interface fa0/0 OFF2(config-if)#no shutdown OFF2(config-if)#ipv6 address 2001:2:3:4::1/64 Перед настройкой OFF1 мы включим отладку NPD на обоих маршрутизаторах, чтобы могли видеть различные сообщения: OFF1#debug ipv6 nd ICMP Neighbor Discovery events debugging is on OFF2#debug ipv6 nd ICMP Neighbor Discovery events debugging is on Команда debug ipv6 nd очень полезна, так как она будет показывать различные сообщения, которые использует NPD. Давайте теперь настроим OFF1: OFF1(config)#interface fa0/0 OFF1(config-if)#no shutdown OFF1(config-if)#ipv6 address autoconfig OFF1 будет настроен для использования SLAAC с командой ipv6 address autoconfig. При включенной отладке вы увидите на своей консоли следующие элементы: OFF1# ICMPv6-ND: Sending NS for FE80::C000:6FF:FE7C:0 on FastEthernet0/0 ICMPv6-ND: DAD: FE80::C000:6FF:FE7C:0 is unique. Он посылает NS для своего собственного IPv6-адреса, и когда никто не отвечает, он понимает, что это единственный хост, использующий этот адрес. Вы также можете видеть, что OFF1 отправляет объявление соседства в сторону OFF2: OFF1# ICMPv6-ND: Sending NA for FE80::C000:6FF:FE7C:0 on FastEthernet0/0 OFF2# ICMPv6-ND: Received NA for FE80::C000:6FF:FE7C:0 on FastEthernet0/0 from FE80::C000:6FF:FE7C:0 Мы можем просмотреть базу данных с информацией L2 и L3 следующим образом: OFF2#show ipv6 neighbors IPv6 Address Age Link-layer Addr State Interface FE80::C000:6FF:FE7C:0 21 c200.067c.0000 STALE Fa0/0 show ipv6 neighbors покажет вам IPv6-адреса и MAC-адреса. OFF1 также отправит запрос маршрутизатора, а OFF2 в ответ отправит объявление маршрутизатора: OFF1# ICMPv6-ND: Sending RS on FastEthernet0/0 OFF2# ICMPv6-ND: Received RS on FastEthernet0/0 from FE80::C000:6FF:FE7C:0 ICMPv6-ND: Sending solicited RA on FastEthernet0/0 ICMPv6-ND: Sending RA from FE80::C001:6FF:FE7C:0 to FF02::1 on FastEthernet0/0 ICMPv6-ND: MTU = 1500 ICMPv6-ND: prefix = 2001:2:3:4::/64 onlink autoconfig ICMPv6-ND: 2592000/604800 (valid/preferred) OFF1# ICMPv6-ND: Received RA from FE80::C001:6FF:FE7C:0 on FastEthernet0/0 ICMPv6-ND: Selected new default router FE80::C001:6FF:FE7C:0 on FastEthernet0/0 Если вы хотите увидеть все маршрутизаторы, о которых знает ваш хост, вы можете использовать следующую команду: OFF1#show ipv6 routers Router FE80::C001:6FF:FE7C:0 on FastEthernet0/0, last update 0 min Hops 64, Lifetime 1800 sec, AddrFlag=0, OtherFlag=0, MTU=1500 HomeAgentFlag=0, Preference=Medium Reachable time 0 msec, Retransmit time 0 msec Prefix 2001:2:3:4::/64 onlink autoconfig Valid lifetime 2592000, preferred lifetime 604800 Поскольку OFF1 настроен для SLAAC он будет использовать префикс в объявлении маршрутизатора для настройки самого себя: OFF1# ICMPv6-ND: Prefix Information change for 2001:2:3:4::/64, 0x0 - 0xE0 ICMPv6-ND: Adding prefix 2001:2:3:4::/64 to FastEthernet0/0 ICMPv6-ND: Sending NS for 2001:2:3:4:C000:6FF:FE7C:0 on FastEthernet0/0 ICMPv6-ND: Autoconfiguring 2001:2:3:4:C000:6FF:FE7C:0 on FastEthernet0/0 ICMPv6-ND: DAD: 2001:2:3:4:C000:6FF:FE7C:0 is unique. Он будет использовать префикс и автоматически настраивать IPv6-адрес. Прежде чем он использует адрес, он будет использовать DAD, чтобы убедиться, что адрес уникален. Давайте посмотрим IPv6-адрес: OFF1#show ipv6 int brief FastEthernet0/0 [up/up] FE80::C000:6FF:FE7C:0 2001:2:3:4:C000:6FF:FE7C:0 Как вы видите, OFF1 использовал 2001:2:3:4::/64 префикс для настройки самого себя. Это вся информация о NPD для вас сейчас, давайте продолжим изучение материала обратив подробное внимание на DHCPv6! Статусный DHCPv6 работает аналогично DHCP для IPv4. Мы все еще используем его для предоставления адресов, шлюзов по умолчанию, DNS-серверов и некоторых других опций клиентам, но одним из ключевых отличий являются сообщения, которые мы теперь используем. DHCP для IPv4 использует сообщения Discover, Offer, Request и ACK. DHCPv6 использует Solicit, Advertise, Request и Reply message. Время получения сообщения, похожие на сообщения обнаружения. Хост будет использовать это сообщение, когда он ищет IPv6-адрес сервера DHCPv6. Сообщение advertise используется для предоставления хосту IPv6-адреса, шлюза по умолчанию и DNS-сервера. Сообщение запроса используется хостом, чтобы спросить, можно ли использовать эту информацию, и ACK отправляется сервером для подтверждения этого. Аналогично, как и для DHCP IPv4, когда ваш DHCP-сервер не находится в той же подсети, вам потребуется DHCP relay для пересылки сообщений DHCP на центральный DHCP-сервер.
ВЕСЕННИЕ СКИДКИ
40%
50%
60%
До конца акции: 30 дней 24 : 59 : 59