По вашему запросу ничего не найдено :(
Убедитесь, что запрос написан правильно, или посмотрите другие наши статьи:
img
Для того, чтобы стать полноценным администратором Asterisk, вам необходимо уметь администрировать операционную систему IP – АТС. О том, как заботиться о своем Asterisk установленном на CentOS расскажем дальше. Сменить SSH порт Подключение и управление операционной системой CentOS осуществляется по протоколу SSH (Secure Shell), который позволяет безопасно производить операции на ОС удаленно. По умолчанию, протокол SSH работает на 22 порту. Чтобы подключиться к серверу IP – АТС, откройте программу SSH – клиент Putty, и в поле, указанном красным, введите IP – адрес или доменное имя вашего Asterisk Мы рекомендуем сохранить подключение в программе. Для этого, в поле, выделенном оранжевым, укажите имя для подключения и нажмите Save В целях повышения безопасности, вы можете его изменить следующим образом: Входим в режим редактирования демона SSH [root@localhost ~]# nano /etc/ssh/sshd_config Ищем строчку, которая содержит запись #Port 22. Обычно она находится под текстовым баннером: # The strategy used for options in the default sshd_config shipped with # OpenSSH is to specify options with their default value where # possible, but leave them commented. Uncommented options change a # default value. #Port 22 #AddressFamily any #ListenAddress 0.0.0.0 #ListenAddress :: Уберите символ # (решетку) в начале строчки и укажите номер порта, который вам необходим. Например, 7022 Port 7022 #AddressFamily any #ListenAddress 0.0.0.0 #ListenAddress :: Сохраните изменения. После успешного сохранения, выполните рестарт демона SSH: [root@localhost ~]# /etc/init.d/sshd restart Управление дисковым пространством Если на вашем Asterisk включен функционал записи телефонных разговоров, то вам необходимо отслеживать свободное дисковое пространство. Мы рекомендуем прибегать в этом вопросе к автоматизации – написанию скриптов, которые будут удалять записи, старше определенного срока автоматически. Итак, перейдем к просмотру свободного дискового пространства. Команда du выводит размер файлов и папок в директории, в которой вы находитесь на текущий момент: [root@localhost ~]# du 1240 ./.mozilla/firefox/5r4h2uwt.default/gmp-gmpopenh264/1.5.3 1244 ./.mozilla/firefox/5r4h2uwt.default/gmp-gmpopenh264 4 ./.mozilla/firefox/5r4h2uwt.default/healthreport Более удобным для человеческого восприятия является команда с флагом -h du -h, которая указывает размер файлов и папок в текущей директории с указанием приставки (K – килобайт, М – мегабайт и так далее.) [root@localhost ~]# du -h 1.3M ./.mozilla/firefox/5r4h2uwt.default/gmp-gmpopenh264/1.5.3 1.3M ./.mozilla/firefox/5r4h2uwt.default/gmp-gmpopenh264 4.0K ./.mozilla/firefox/5r4h2uwt.default/healthreport Наиболее «тяжелой» с точки зрения занимаемого пространства директорией в файловой структуре Asterisk является папка /var/spool/asterisk/, в которой находятся файлы голосовой почты, системы записи, факсы и так далее. Если мы хотим узнать размер папки, в которой мы храним файлы системы записи, то добавляем к конструкции du -h флаг s: [root@localhost asterisk]# du -sh /var/spool/asterisk/monitor/ 111M /var/spool/asterisk/monitor/ Отлично, с этим разобрались. Теперь нам надо научиться понимать размер наших дисков. Это гораздо проще – укажите команду df - h и система выведет все диски, с указанием свободного пространства, общего объема и процентной загрузки: [root@localhost asterisk]# df -h Filesystem Size Used Avail Use% Mounted on /dev/sda2 146G 4.8G 134G 4% / tmpfs 498M 72K 498M 1% /dev/shm /dev/sda1 283M 25M 244M 10% /boot Нужные команды файловой системы Перечислим важные команды, которые пригодятся Вам в процессе администрирования вашего Asterisk: ls - вывод списка файлов и папок в текущей директории ls -l – более подробная модификация указанной выше команды. Помимо прочего, команда выводит в консоль права на файл и его владельца. cd /var/spool/asterisk/monitor/ - сделать папку с записями телефонных разговоров текущей директорией. cd .. - вернуться на одну папку назад по файловой иерархии cd ../.. - вернуться на две директории обратно cp index.php /var - скопировать файл index.php в директорию /var cp index.php /var - переместить файл index.php в директорию /var Время и настройка NTP Для синхронизации серверного времени по протоколу NTP, выполните следующие команды: service ntpd stop ntpdate pool.ntp.org service ntpd start service httpd restart Устанавливаем временную зоны сервера: Подключитесь пользователем root к серверу и выполните команду date. Система укажет Вам текущую дату, время и временную зону. [root@localhost ~]# date echo date("D M j G:i:s T Y"); Измените текущую директорию с помощью команды cd /usr/share/zoneinfo. Далее выберите наиболее подходящий регион. Например, если вы из Самары, то перейдите в папку /Europe/Samara Далее нужно создать линк настройки /etc/localtime. В случае с Самарой, команда будет такой: ln -sf /usr/share/zoneinfo/Europe/Samara /etc/localtime Установим переменную ZONE в файле /etc/sysconfig/clock на Europe/Samara. Выполните следующие команды: [root@localhost ~]# vim /etc/sysconfig/clock В открывшемся файле для редактирования через vim нажмите клавишу «o» на клавиатуре. Стрелками сотрите содержимое файла и вставьте нужную временную зону, в нашем примере будет так : ZONE=Europe/Samara. Сохраните изменения нажав :x! и затем клавишу Enter. Установите аппаратное время сервера командой /sbin/hwclock --systohc Просмотр крупных файлов tail /home/log.txt - вывод последних 10 строчек указанного файла. В данном случае файл /home/log.txt tail -f /home/log.txt - вывод последних 10 строчек указанного файла. Если в файл будет динамически добавлены новые строки, это отразится в выводе команды в реальном времени tail –n 100 /home/log.txt - вывод последних 100 строчек указанного файла. tail –n 100 /home/log.txt > result.txt - данная команда запишет 100 последних строчек файла /home/log.txt в файл result.txt
img
В том случае, если на вашем предприятии организован мощный отдел продаж и ежедневно вы обрабатываете большое количество вызовов, то база данных, в которую складываются записи CDR (Call Detail Record) начинается переполняться и наращивать объем. Со временем, это может негативно сказаться на производительности сервера, приводя к замедлению обработки процессов резервного копирования и обновления системы. Если вы не хотите удалять старые записи в базе данных, то элегантным решением данной проблемы будет перемещение базы данных для CDR на отдельный сервер. О том, как это осуществить мы расскажем в этой статье. Рабочие условия Предположим, что в нашем корпоративном контуре имеются следующие виртуальные машины: 192.168.1.2 - сервер IP – АТС Asterisk с графической оболочкой FreePBX; 192.168.1.3 - сервер, на котором развернута база данных MySQL; Поддерживаемые типы баз данных это MySQL (MariaDB) и PostgreSQL; Предварительно, настройте разрешения на подключения с IP – адреса АТС (файл pg_hba.conf в PostgreSQL и командно через консоль в случае MySQL) и создайте пользователя freepbxuser. Произведем тест на связность. Дадим команду с консоли сервера Asterisk: mysql --host=192.168.1.3 -ufreepbxuser -p asteriskcdrdb Введите пароль для подключения. Если все ОК, переходим к настройке FreePBX. Настройка FreePBX Переходим в раздел Settings → Advanced Settings. Убеждаемся, что параметры Display Readonly Settings и Override Readonly Settings установлены в значение Yes. Remote CDR DB Host - IP – адрес хоста, на котором развернута база данных. В нашем примере это 192.168.1.3; Remote CDR DB Name - имя базы данных. Укажите здесь asteriskcdrdb; Remote CDR DB Password - пароль для подключения к MySQL от пользователя freepbxuser; Remote CDR DB Port - порт, на котором база данных на удаленном хосте слушает запросы; Remote CDR DB Table - таблица, внутри БД, с которой мы будет работать. Указываем здесь cdr; Remote CDR DB Type - тип базы данных. Мы указываем MySQL; Remote CDR DB User - имя пользователя, под которым мы производим подключение; Более подробно почитать про базу данных asteriskcdrdb вы можете почитать в этой статье; Сохраняем изменения и переходим в консоль сервер АТС. Останавливаем FreePBX: fwconsole stop Редактируем файл odbc.ini. Там, в параметре server, нам необходимо указать IP – адрес хоста, на котором у нас развернута внешняя БД: vim /etc/odbc.ini [MySQL-asteriskcdrdb] Description=MySQL connection to 'asteriskcdrdb' database driver=MySQL server=192.168.1.3 //замену производим вот тут database=asteriskcdrdb Port=3306 Socket=/var/lib/mysql/mysql.sock option=3 Charset=utf8 Сохраняем изменения в файле и запускаем FreePBX: fwconsole start Теперь остается только проверить функционал. Сделайте пару тестовых звонков и проверьте их наличие в БД на удаленном хосте.
img
Перед началом, советуем почитать материал про плоскость управления. Топология - это набор связей (или ребер) и узлов, которые описывают всю сеть. Обычно топология описывается и рисуется как граф, но она также может быть представлена в структуре данных, предназначенной для использования машинами, или в дереве, которое обычно предназначено для использования людьми. Топологическую информацию можно обобщить, просто сделав так, чтобы пункты назначения, которые физически (или виртуально) соединены на расстоянии нескольких прыжков, казались непосредственно присоединенными к локальному узлу, а затем удалив информацию о связях и узлах в любой маршрутной информации, переносимой в плоскости управления, с точки суммирования. Рисунок 4 иллюстрирует эту концепцию. Изучение топологии Казалось бы, достаточно просто узнать о топологии сети: изучить подключенные каналы передачи данных. Однако то, что кажется простым в сетях, часто оказывается сложным. Изучение локального интерфейса может рассказать вам о канале, но не о других сетевых устройствах, подключенных к этому каналу. Кроме того, даже если вы можете обнаружить другое сетевое устройство, работающее с той же плоскостью управления по определенному каналу, это не означает, что другое устройство может вас обнаружить. Таким образом, необходимо изучить несколько вопросов. Обнаружение других сетевых устройств Если маршрутизаторы A, B и C подключены к одному каналу, как показано на рисунке 5, какие механизмы они могут использовать для обнаружения друг друга, а также для обмена информацией о своих возможностях? Первое, что следует отметить в отношении сети, показанной в левой части рисунка 5, - это то, что интерфейсы не соответствуют соседям. Фактические отношения соседей показаны в правой части рисунка 5. У каждого маршрутизатора в этой сети есть два соседа, но только один интерфейс. Это показывает, что плоскость управления не может использовать информацию об интерфейсе для обнаружения соседей. Должен быть какой-то другой механизм, который плоскость управления может использовать для поиска соседей. Ручная настройка - одно из широко распространенных решений этой проблемы. В частности, в плоскостях управления, предназначенных для перекрытия другой плоскости управления, или плоскостях управления, предназначенных для построения отношений соседства через несколько маршрутизируемых переходов по сети, ручная настройка часто является самым простым доступным механизмом. С точки зрения сложности, ручная настройка очень мало добавляет к самому протоколу. Например, нет необходимости в какой-либо форме многоадресного объявления соседей. С другой стороны, ручная настройка соседей требует настройки информации о соседях, что увеличивает сложность с точки зрения конфигурации. В сети, показанной на рисунке 5, маршрутизатор A должен иметь отношения соседства, настроенные с помощью B и C, маршрутизатор B должен иметь отношения соседства, настроенные с помощью A и C, а маршрутизатор C должен иметь отношения соседства, настроенные с помощью A и B. Даже если настройка соседей автоматизирована, ручная настройка углубляет и расширяет поверхности взаимодействия между плоскостями управления и контроля. Определение соседей из маршрутных объявлений - это решение, которое когда-то было широко распространено, но стало менее распространенным. В этой схеме каждое устройство периодически объявляет информацию о доступности и / или топологии. Когда маршрутизатор впервые получает информацию о маршрутизации от другого устройства, он добавляет удаленное устройство в локальную таблицу соседей. Пока соседнее устройство продолжает отправлять информацию о маршрутизации на регулярной основе, отношения между соседями будут считаться активными или активными. При выводе соседей из объявлений о маршрутизации важно иметь возможность определить, когда сосед вышел из строя (чтобы информация о достижимости и топологии, полученная от соседа, могла быть удалена из любых локальных таблиц). Наиболее распространенный способ решения этой проблемы - использование пары таймеров: таймера задержки или отключения и таймера обновления или объявления. Пока сосед отправляет обновление или объявление в пределах таймера отключения или задержки, он считается включенным или активным. Если весь "мертвый" период проходит без получения каких-либо обновлений, сосед считается "мертвым", и предпринимаются некоторые действия, чтобы либо проверить информацию о топологии и доступности, полученную от соседа, либо он просто удаляется из таблицы. Нормальная взаимосвязь между таймером отключения и таймером обновления составляет 3× - таймер отключения установлен на трехкратное значение таймера обновления. Следовательно, если сосед не отправляет три подряд обновления или объявления, таймер бездействия активируется и начинает обработку неработающего соседа. Явные приветствия являются наиболее распространенным механизмом обнаружения соседей. Пакеты приветствия передаются на основе таймера приветствия, и сосед считается "мертвым", если приветствие не получено в течение интервала таймера ожидания или объявления. Это похоже на таймеры dead и update, используемые для вывода соседей из объявлений маршрутизации. Приветствия обычно содержат информацию о соседней системе, такую как поддерживаемые возможности, идентификаторы уровня устройства и т. д. Централизованная регистрация - это еще один механизм, который иногда используется для обнаружения и распространения информации о соседних устройствах. Каждое устройство, подключенное к сети, будет отправлять информацию о себе в какую-либо службу и, в свою очередь, узнавать о других устройствах, подключенных к сети, из этой централизованной службы. Конечно, эту централизованную службу нужно каким-то образом обнаружить, что обычно осуществляется с помощью одного из других упомянутых механизмов. Обнаружение двусторонней связи В плоскостях управления с более сложными процессами формирования смежности - особенно протоколами, которые полагаются на приветствия для формирования отношений соседства - важно определить, могут ли два маршрутизатора видеть друг друга (осуществлять двустороннюю связь), прежде чем формировать отношения. Обеспечение двусторонней связи не только предотвращает проникновение однонаправленных каналов в таблицу пересылки, но также предотвращает постоянный цикл формирования соседей - обнаружение нового соседа, построение правильных локальных таблиц, объявление о доступности новому соседу, тайм-аут ожидания hello или другую информацию, удаление соседа или поиск нового соседа. Существует три основных варианта управления двусторонним подключением между сетевыми устройствами. Не утруждайте себя проверкой двусторонней связи. Некоторые протоколы не пытаются определить, существует ли двусторонняя связь между сетевыми устройствами в плоскости управления, а скорее предполагают, что сосед, от которого принимаются пакеты, также должен быть доступен. Перенос списка доступных соседей, услышанных на линии связи. Для протоколов, которые используют приветствия для обнаружения соседей и поддержания работоспособности, перенос списка доступных соседей по одному и тому же каналу является распространенным методом обеспечения двусторонней связи. Рисунок 6 иллюстрирует это. На рисунке 6 предположим, что маршрутизатор A включен раньше B. В этом случае: A отправит приветствия с пустым списком соседей, поскольку он не получил приветствия от любого другого сетевого устройства по каналу. Когда B включен, он получит приветствие A и, следовательно, включит A в список соседей, которые он слышал в своих hello пакетах. Когда A получает приветствие B, он, в свою очередь, включает B в свой список "услышанных" соседей в своих пакетах приветствия. Когда и A, и B сообщают друг о друге в своих списках соседей, которые "слышно от", оба маршрутизатора могут быть уверены, что двустороннее соединение установлено. Этот процесс часто называют трехсторонним рукопожатием, состоящим из трех шагов: A должен послать привет B, чтобы B мог включить A в свой список соседей. B должен получить приветствие A и включить A в свой список соседей. A должен получить приветствие B с самим собой (A) в списке соседей B. Положитесь на базовый транспортный протокол. Наконец, плоскости управления могут полагаться на базовый транспортный механизм для обеспечения двусторонней связи. Это необычное решение, но есть некоторые широко распространенные решения. Например, протокол Border Gateway Protocol (BGP), опирается на протокол управления передачей (TCP), чтобы обеспечить двустороннюю связь между спикерами BGP. Определение максимального размера передаваемого блока (MTU) Для плоскости управления часто бывает полезно выйти за рамки простой проверки двусторонней связи. Многие плоскости управления также проверяют, чтобы максимальный размер передаваемого блока (MTU) на обоих интерфейсах канала был настроен с одинаковым значением MTU. На рисунке 7 показана проблема, решаемая с помощью проверки MTU на уровне канала в плоскости управления. В ситуации, когда MTU не совпадает между двумя интерфейсами на одном канале, возможно, что соседние отношения сформируются, но маршрутизация и другая информация не будут передаваться между сетевыми устройствами. Хотя многие протоколы имеют некоторый механизм для предотвращения использования информации о результирующих однонаправленных каналах при вычислении путей без петель в сети, все же полезно обнаруживать эту ситуацию, чтобы о ней можно было явным образом сообщить и исправить. Протоколы плоскости управления обычно используют несколько методов, чтобы либо явно обнаружить это условие, либо, по крайней мере, предотвратить начальные этапы формирования соседей. Протокол плоскости управления может включать локально настроенный MTU в поле в пакетах приветствия. Вместо того чтобы просто проверять наличие соседа во время трехстороннего рукопожатия, каждый маршрутизатор может также проверить, чтобы убедиться, что MTU на обоих концах линии связи совпадает, прежде чем добавлять новое обнаруженное сетевое устройство в качестве соседа. Другой вариант - добавить пакеты приветствия к MTU локального интерфейса. Если дополненный пакет приветствия максимального размера не получен каким-либо другим устройством в канале связи, начальные этапы отношений соседства не будут завершены. Трехстороннее рукопожатие не может быть выполнено, если оба устройства не получают пакеты приветствия друг друга. Наконец, протокол плоскости управления может полагаться на базовый транспорт для регулирования размеров пакетов, чтобы коммуникационные устройства могли их принимать. Этот механизм в основном используется в плоскостях управления, предназначенных для наложения какой-либо другой плоскости управления, особенно в случае междоменной маршрутизации и виртуализации сети. Плоскости управления наложением часто полагаются на обнаружение MTU пути (Path MTU) для обеспечения точного MTU между двумя устройствами, подключенными через несколько переходов. Сам размер MTU может оказать большое влияние на производительность плоскости управления с точки зрения ее скорости сходимости. Например, предположим, что протокол должен передавать информацию, описывающую 500 000 пунктов назначения по многопоточному каналу с задержкой 500 мс, и для описания каждого пункта назначения требуется 512 бит: Если MTU меньше 1000 бит, для плоскости управления потребуется 500 000 циклов туда и обратно для обмена всей базой данных доступных пунктов назначения, или около 500 000 × 500 мс, что составляет 250 000 секунд или около 70 часов. Если MTU составляет 1500 октетов или 12000 битов, плоскости управления потребуется около 21000 циклов туда и обратно для описания всей базы данных доступных пунктов назначения, или около 21000 × 500 мс, что составляет около 175 минут. Важность сжатия такой базы данных с использованием какого-либо оконного механизма для сокращения числа полных обходов, необходимых для обмена информацией о достижимости, и увеличения MTU вполне очевидна. Далее почитайте материал о том, как происходит обнаружение соседей в сетях.
ВЕСЕННИЕ СКИДКИ
40%
50%
60%
До конца акции: 30 дней 24 : 59 : 59