По вашему запросу ничего не найдено :(
Убедитесь, что запрос написан правильно, или посмотрите другие наши статьи:
img
Протокол EIGRP имеет гораздо более быструю сходимость по сравнению с протоколами RIP и IGRP, потому что в отличие от дистанционно – векторных протоколов маршрутизации, которым необходимо передать таблицы маршрутизации для сходимости, в протоколе EIGRP соседи маршрутизаторы обмениваются только “Hello” пакетами. Используя протокол EIGRP, маршрутизаторы узнают друг друга в процессе сходимости, обмениваясь различными параметрами для установления таблиц маршрутизации. Аналогичные процессы происходят в протоколе OSPF и других протокола состояния канала. Два маршрутизатора могут стать соседями только при выполнении следующих условий: Произошел успешный обмен “Hello” сообщениями Интерфейсы находятся в рамках одной автономной системы Используют одинаковые метрики: EIGRP использует полосу пропускания и задержку в качестве метрик по умолчанию. Если вы решите использовать и другие метрики, такие как загрузка, надежность и MTU, то их необходимо настроить на обоих маршрутизаторах. Таймера “Hello” пакетов используют одно и то же значение для следующих значений: Частота, с которой маршрутизаторы отправляют “Hello” пакеты друг другу. Время, в течении которого, маршрутизатор не отвечает на пакеты и маркируется недоступным. «Hello» пакеты отправляются не только во время процесса сходимости, но и после, для отслеживания статуса того, или иного узла маршрутизации. Если маршрутизатор становится недоступен (не отвечает на пакеты «Hello»), то по истечению указанного выше таймера маршрутизатор отмечаются как недоступный. Обновление маршрутов Даже после полной сходимости, EIGRP продолжает обновлять маршруты на основании доступности роутеров – соседей. Это позволяет маршрутизаторам поддерживать свою собственную таблицу «состояния связей», или по другом, link – state. После того, как маршрутизаторы построят таблицу соседей и таблицу состояния связей, они знают своих соседей, топологию сети в своем ближайшем окружении и топологию сети в ближайшем окружении своих соседей. Далее, каждый маршрутизатор рассчитывает параметры и качество каждого маршрута, который находятся в таблице состояния связей. EIGRP использует DUAL (Diffusing Update Algorithm) для расчета качества маршрута. DUAL (Diffusing Update Algorithm) Cisco использует Diffusing Update Algorithm, или DUAL алгоритм для расчет качества сетевого маршрута в рамках протокола EIGRP. Алгоритм DUAL повышает эффективность протокола EIGRP по сравнению с IGRP, предотвращая появление петель маршрутизации. Отметим следующие характеристики алгоритма DUAL: Для каждой сети назначения рассчитывается маршрут через Successor, или другими словами – лучший маршрут, а также, рассчитывается маршрут через Feasible Successor (второй по приоритету маршрут). DUAL поддерживает маски переменной длинны или VLSA (variable-length subnet masking), позволяя EIGRP выполнять маршрутизации в различных подсетях. Алгоритм DUAL очень быстро рассчитывает новый маршрут в пункт назначения, в случаях, если основной маршрут недоступен. DUAL поддерживает две опции, которые обеспечивают быстрый переход на новую маршрутизацию в случаях недоступности: Successor и Feasible Successor маршруты. Для каждого из путей у EIGRP всегда есть резервный путь. Если оба маршрута, Successor и Feasible Successor недоступны, DUAL выполняет опрос соседей маршрутизаторов, для выбора лучшего маршрута. По причине того, что каждый из соседей маршрутизатора так же имеют Successor и Feasible Successor маршруты, новый маршрут в сеть назначения, полученный от них, является наиболее приемлемым и качественным с точки зрения метрик.
img
Всем привет! Недавно мы в одной из наших статей рассматривали, как сделать резервную копию Cisco Unified Communications Manager (CUCM) при помощи системы восстановления системы Disaster Recovery System (DRS). Сегодня рассмотрим метод архивации и восстановления при помощи интерфейса командной строки (CLI), который может использоваться в случае, когда нет возможности воспользоваться графическим интерфейсом. Создание бэкапа Сначала нужно указать устройство, на которых будет храниться бэкап (SFTP сервер). Для начала нужно выполнить команду: utils disaster_recovery device add network [devicename path] [server_name/ip_address] [username] [number_of_backups] devicename – имя устройства резервного копирования; path – путь до архива; server_name/ip_address – имя хоста или IP - адрес устройства, где будет храниться архив username – имя пользователя, необходимое для подключения к серверу; number_of_backups – количество бэкапов, которое будет создано. По умолчанию 2. Опциональный параметр; Пример: admin: utils disaster_recovery device add network networkDevice /root 192.168.1.1 root 3 Посмотреть список добавленных устройств можно используя команду: utils disaster_recovery device list Далее создаем резервную копию, выполнив команду utils disaster_recovery backup network [featurelist] [path] [servername] [username] featurelist – список функций для создания копии, разделяется запятой; path – путь до архива; servername – имя хоста или ip адрес устройства, где будет храниться архив; username – имя пользователя, необходимое для подключения к серверу; Список функций можно получить используя команду: utils disaster_recovery show_registration Чтобы проверить статус бэкапа используем команду: utils disaster_recovery status backup Восстановление Сначала проверим наличие файлов на SFTP сервере: utils disaster_recovery show_backupfiles [name] name – имя устройства резервного копирования Выбираем файл бэкапа, из тех, которые отобразились при выводе предыдущей команды: utils disaster_recovery restore network [restore_server] [tarfilename] [devicename] restore_server – имя хоста или ip адрес устройства, где будет храниться архив; tarfilename – имя файла бэкапа; devicename – имя устройства резервного копирования; Пример: utils disaster_recovery restore network 192.168.1.1 2018-01-15-15-35-28 networkDevice На вопрос действительно ли мы хотим восстановить систему отвечаем “y”. После этого проверяем статус восстановления системы: utils disaster_recovery status restore
img
ClamAV является антивирусом с открытым исходным кодом. Его используют для обнаружения вирусов, вредоносных программ и вредоносного программного обеспечения на компьютерах под управлением Linux и даже в решениях именитых вендоров, так как эта разработка была выкуплена компанией Cisco, но все же оставлена в виде open-source. Угроза со стороны вирусов, троянов и других вредоносных программ всегда возможна, их количество растет в геометрической прогрессии как по количеству, так и по сложности, и антивирусное программное обеспечение всегда должно использовать сложные методы обнаружения. Никогда нельзя дать гарантии, что ваша система не станет жертвой этих нежелательных фрагментов кода, так что важно оставаться внимательным при использовании Интернета и совместном использовании файлов. Ну и отсюда вытекает необходимость реализации политик безопасности на основе здравого смысла и использовании современных антивирусных программ. Установка ClamAV Чтобы установить ClamAV в CentOS / RHEL 7, нам нужно установить репозиторий EPEL: # yum install epel-release Затем необходимо установить ClamAV со всеми его полезными инструментами: # yum -y install clamav-server clamav-data clamav-update clamav-filesystem clamav clamav-scanner-systemd clamav-devel clamav-lib clamav-server-systemd Настройка антивируса ClamAV Для настройки ClamAV в первую очередь нам нужно удалить конфигурацию по умолчанию, чтобы создать свою: # sed -i '/^Example/d' /etc/clamd.d/scan.conf После удаления строк примера нужно сделать некоторые правки, чтобы определить тип сервера TCP и предоставить root права для запуска антивируса: # vim /etc/clamd.d/scan.conf Значение, данное с LocalSocket, является файлом, использующим связи с внешними процессами. Следует выполнить следующую строку: LocalSocket /var/run/clamd.scan/clamd.sock Добавляем эти две строки в конец файла и сохраняем: User root LocalSocket /var/run/clamd.<SERVICE>/clamd.sock Чтобы поддерживать базу данных сигнатур ClamAV в актуальном состоянии, необходимо включить инструмент под названием Freshclam. Поэтому нужно создать файл резервной копии из его файла конфигурации: # cp /etc/freshclam.conf /etc/freshclam.conf.bak Freshclam читает свою конфигурацию из /etc/freshclam.conf. Файл содержит строку со словом Пример, чтобы пользователи не могли использовать значения по умолчанию, их необходимо удалить их или закомментировать, прежде чем сможем использовать freshclam. А так как не все настройки по умолчанию не подходят для наших целей, придется внимательно проверить файл и решить, что нам понадобится. Каждая команда также будет прокомментирована. # sed -i '/^Example/d' /etc/freshclam.conf Нам нужно запустить Freshclam, чтобы обновить базу данных и проверить, успешно ли задана конфигурация: # freshclam ClamAV update process started at Tue Nov 6 15:51:59 2018 WARNING: Can't query current.cvd.clamav.net WARNING: Invalid DNS reply. Falling back to HTTP mode. Reading CVD header (main.cvd): OK (IMS) main.cvd is up to date (version: 58, sigs: 4566249, f-level: 60, builder: sigmgr) Reading CVD header (daily.cvd): OK Downloading daily-25006.cdiff [100%] Downloading daily-25092.cdiff [100%] Downloading daily-25093.cdiff [100%] Downloading daily-25094.cdiff [100%] Downloading daily-25095.cdiff [100%] daily.cld updated (version: 25095, sigs: 2143057, f-level: 63, builder: neo) Reading CVD header (bytecode.cvd): OK bytecode.cvd is up to date (version: 327, sigs: 91, f-level: 63, builder: neo) Database updated (6709397 signatures) from database.clamav.net (IP: 104.16.186.138) Процесс выводит свой прогресс-бар в терминал, и вы можете увидеть несколько сообщений об ошибках. Например, он может сообщить, что ему не удалось загрузить нужный файл. Не паникуйте - freshclam попробует несколько зеркал. Он сообщает, что main.cvd, daily.cvd и bytecode.cvd обновляются, и по завершении, вы будете знать, что у вас есть последние сигнатуры. Мы можем запустить freshclam в любое время, когда необходимо убедиться, что базы данных сигнатур обновлены, но было бы неудобно всегда запускать его вручную. При запуске с аргументом -d freshclam будет работать и периодически проверять наличие обновлений в течение дня (по умолчанию каждые два часа). Чтобы сохранить некий порядок в системе, мы создали файл службы для запуска freshclam и зарегистрировали его в systemd: # vim /usr/lib/systemd/system/clam-freshclam.service Затем мы помещаем следующий код в файл и сохраняем его: [Unit] Description = freshclam scanner After = network.target [Service] Type = forking ExecStart = /usr/bin/freshclam -d -c 4 Restart = on-failure PrivateTmp = true RestartSec = 20sec [Install] WantedBy=multi-user.target Раздел [Unit] определяет основные атрибуты сервиса, такие как его описание и его зависимость от сетевого соединения. Раздел [Service] определяет сам сервис, ExecStart будет запускать freshclam с аргументом -d, Type сообщает systemd, что процесс будет разветвляться и запускаться в фоновом режиме, а при перезапуске systemd отслеживает сервис и перезапускает его автоматически в случае. Раздел [Install] определяет, как он будет связан, когда запустится systemctl enable. Перезагрузите systemd, чтобы применить изменения: # systemctl daemon-reload Далее запустите и включите сервис freshclam: # systemctl start clam-freshclam.service # systemctl status clam-freshclam.service clam-freshclam.service - freshclam scanner oaded: loaded (/usr/lib/systemd/system/clam-freshclam.service; disabled; vendor preset: disabled) Active: active (running) since Tue 2018-11-06 15:56:53 IST; 3s ago Process: 7926 ExecStart=/usr/bin/freshclam -d -c 4 (code=exited, status=0/SUCCESS) Main PID: 7927 (freshclam) CGroup: /system.slice/clam-freshclam.service L-7927 /usr/bin/freshclam -d -c 4 Nov 06 15:56:53 node2.example.com systemd[1]: Starting freshclam scanner... Nov 06 15:56:53 node2.example.com systemd[1]: Started freshclam scanner. Nov 06 15:56:53 node2.example.com freshclam[7927]: freshclam daemon 0.100.2 (OS: linux-gnu, ARCH: x86_64, CPU: x86_64) Nov 06 15:56:53 node2.example.com freshclam[7927]: ClamAV update process started at Tue Nov 6 15:56:53 2018 Если все работает нормально, добавляем его в службу запуска системы: # systemctl enable clam-freshclam.service Created symlink from /etc/systemd/system/multi-user.target.wants/clam-freshclam.service to /usr/lib/systemd/system/clam-freshclam.service. Теперь для настройки ClamAV необходимо создать файл сервиса ClamAV. У нас есть пример файла службы, который нам нужно скопировать в папку системных служб. Нам нужно изменить его имя на что-то понятное. Затем нам нужно внести в него небольшие изменения: # mv /usr/lib/systemd/system/clamd@.service /usr/lib/systemd/system/clamd.service Поскольку мы изменили имя, нам нужно изменить его в файле, который также использует этот сервис: # vim /usr/lib/systemd/system/clamd@scan.service Мы изменили первую строку, удалив @, чтобы это выглядело так: .include /lib/systemd/system/clamd.service В том же месте нам нужно изменить файл сервиса Clamd: # vim /usr/lib/systemd/system/clamd.service Мы добавляем следующие строки в конце: [Install] WantedBy=multi-user.target Удаляем % i из опций Description и ExecStart. Затем изменяем их, чтобы они выглядели следующим образом: Description = clamd scanner daemon ExecStart = /usr/sbin/clamd -c /etc/clamd.d/scan.conf TimeoutSec=5min Restart = on-failure RestartSec=10sec Далее запустите сервис clamv # systemctl start clamd.service # systemctl status clamd.service clamd.service - clamd scanner daemon Loaded: loaded (/usr/lib/systemd/system/clamd.service; enabled; vendor preset: disabled) Active: active (running) since Tue 2018-11-06 19:48:17 IST; 16s ago Docs: man:clamd(8) man:clamd.conf(5) https://www.clamav.net/documents/ Process: 1460 ExecStart=/usr/sbin/clamd -c /etc/clamd.d/scan.conf (code=exited, status=0/SUCCESS) Main PID: 1461 (clamd) CGroup: /system.slice/clamd.service L-1461 /usr/sbin/clamd -c /etc/clamd.d/scan.conf Nov 06 19:48:15 node2.example.com clamd[1461]: ELF support enabled. Nov 06 19:48:15 node2.example.com clamd[1461]: Mail files support enabled. Nov 06 19:48:15 node2.example.com clamd[1461]: OLE2 support enabled. Nov 06 19:48:15 node2.example.com clamd[1461]: PDF support enabled. Nov 06 19:48:15 node2.example.com clamd[1461]: SWF support enabled. Nov 06 19:48:15 node2.example.com clamd[1461]: HTML support enabled. Nov 06 19:48:15 node2.example.com clamd[1461]: XMLDOCS support enabled. Nov 06 19:48:15 node2.example.com clamd[1461]: HWP3 support enabled. Nov 06 19:48:15 node2.example.com clamd[1461]: Self checking every 600 seconds. Nov 06 19:48:17 node2.example.com systemd[1]: Started clamd scanner daemon. Если все хорошо, то включите сервис clamd. # systemctl enable clamd.service Created symlink from /etc/systemd/system/multi-user.target.wants/clamd.service to /usr/lib/systemd/system/clamd.service. Для проверки текущей папки мы запускаем следующую команду: # clamscan --infected --remove --recursive ./ ----------- SCAN SUMMARY ----------- Known viruses: 6702413 Engine version: 0.100.2 Scanned directories: 7 Scanned files: 9 Infected files: 0 Data scanned: 0.01 MB Data read: 0.00 MB (ratio 2.00:1) Time: 25.439 sec (0 m 25 s) Мы надеемся вы правильно выполнили все этапы настройки ClamAV в RHEL / CentOS 7 Linux и они оказались полезны для вас в том или ином виде.
ВЕСЕННИЕ СКИДКИ
40%
50%
60%
До конца акции: 30 дней 24 : 59 : 59