По вашему запросу ничего не найдено :(
Убедитесь, что запрос написан правильно, или посмотрите другие наши статьи:
img
В некоторых компаниях существует сменный график работы операторов. Как правило, в этом случае, они делят между собой рабочее место. То есть, когда приходит один оператор, то он вводит на общей рабочей станции свои учётные данные и работает под своей учётной записью, а когда приходит другой оператор - то делает то же самое, но под собственной учётной записью. Таким образом, компания экономит на необходимости организации отдельного рабочего места под каждого сотрудника. Кстати, с IP-телефоном можно провести точно такой же трюк и для этого существует специальное понятие - Hot Desking. Как это сделать на IP-АТС Asterisk с помощью графической оболочки FreePBX, мы сейчас расскажем в этой статье. Итак, для того чтобы настроить эту фичу, нам сначала нужно разделить привычный нам модуль Extensions на два отдельных модуля Devices и Users. Для этого открываем Advanced Settings, ищем опцию User & Devices Mode и меняем её значение на deviceanduser вместо extensions. Не забываем нажать Submit и Apply Config Отлично! Теперь, если мы посмотрим в раздел Applications, то увидим там два новых модуля - Devices и чуть пониже - Users: Рассмотрим модуль Devices. Данный модуль теперь управляет сущностями устройств, то есть – телефонов, софтфонов и других клиентов. Как видите, здесь уже находятся внутренние номера, которые были созданы ещё в модуле Extensions: Однако теперь, доступный для настройки функционал немного изменился: По умолчанию, на данном устройстве есть жёстко привязанный пользователь (в данном случае - 175. Мы рассмотрим его настройки в модуле Users). В такой конфигурации на данное устройство нельзя залогиниться с учётными данными другого пользователя. Чтобы это изменить, нужно поменять значение опции Device Type с Fixed на Adhoc. Дефолтного пользователя, который будет по умолчанию залогинен на данном устройстве, можно оставить без изменения, а можно поставить: Теперь нужно сделать настройки для пользователей, которые будут логиниться на данное устройство в модуле Users. Как видите, пользователи также остались от тех, которые были созданы при модуле Extensions: Для начала сделаем настройки для дефолтного пользователя на устройстве - 175. Самое главное здесь – это задать пароль (а точнее даже PIN) пользователя, чтобы функционал аутентификации заработал на устройстве. Пользователь вручную будет вводить этот пароль на устройстве, поэтому в качестве пароля можно указать только цифры: Один настроенный пользователь нам ничего не даст, чтобы организовать сменную работу на устройстве, нам нужно их как минимум два. Для этого, в модуле Users, создадим ещё одного пользователя, который не будет привязан ни к какому устройству и зададим для него PIN код: Супер, переходим к самому интересному. У нас есть софтфон DrayTek, который выступает в роли устройства с номером 175. По умолчанию, на нём сидит пользователь Алексей Добронравов с внутренним номером 175. Но сегодня в смену вступает созданный ранее пользователь - Крипто Виталий с внутренним номером 199. Чтобы залогиниться на устройстве, Крипто Виталию нужно: Набрать Feature Code - *11; Он услышит в трубке предложение набрать свой внутренний номер (199) и нажать #; Если такой внутренний номер существует, то ему будет предложено ввести пароль (PIN код) и нажать #; Если пароль будет введён верно, то пользователя поблагодарят и сообщат, что оператор зарегистрирован. Для того, чтобы удалить регистрацию, используйте фича код - *12 Сногсшибательно! Теперь на нашем устройстве (софтфоне) зарегистрирован другой пользователь (Крипто Виталий) и он может совершать звонки! Давайте проверим это, позвонив на другой внутренний номер, например - 188, на котором у нас зарегистрирован стационарный телефон: Profit! Попробуйте реализовать этот функционал у себя и сократите затраты на организацию дополнительных мест!
img
@media screen and (max-width: 736px){ .video-container { position: relative; padding-bottom: 56.25%; padding-top: 30px; height: 0; overflow: hidden; } .video-container iframe { position: absolute; top:0; left: 0; width: 100%; height: 100%; }} Мы живем в мире, в котором побеждают быстрые и общительные. Если говорить о приложениях, то достичь двух этих целей можно через WebSocket. WebSocket часто называют высокопроизводительным протоколом передачи данных, и он необходим для создания канала связи между клиентом и сервером. Так что же это значит, и какую роль WebSocket играет в безопасности API? Обо всем этом поговорим в статье. Что такое WebSocket? Исходя из общепринятого названия, WebSocket – это дуплексный протокол, который часто используется в клиент-серверном канале связи. Он считается двунаправленным, т.е. передача данных выполняется от клиента к серверу и наоборот.  Соединение, установленное с помощью WebSocket, сохраняется до тех пор, пока его не прервет любой из участников. Если одна сторона разрывает соединение, то другая не сможет продолжить коммуникацию, поскольку соединение автоматически разрывается для обоих участников. Чтобы инициировать соединение, WebSocket нужна поддержка со стороны HTTP. Это основа современной разработки веб-приложений, с непрерывным потоком данных и несинхронизированным трафиком. Для чего нужен WebSocket и в каких случаях от него лучше отказаться? WebSocket – это необходимый инструмент для клиент-серверного взаимодействия. Поэтому важно четко понимать его возможности и варианты использования. WebSocket подходит, если вы: Разрабатываете веб-приложения реального времени Самый популярный вариант использования WebSocket – это разработка приложений реального времени с постоянным отображением данных на стороне клиента. Внутренний сервер постоянно отправляет эти данные, а WebSocket реализует их бесперебойную передачу или отправку через уже открытое соединение. Использование WebSocket ускоряет передачу данных и улучшает производительность приложения.  Реальным примером использования такой возможности WebSocket является сайт по торговле биткоинами. WebSocket помогает обрабатывать данные, которые внутренний сервер отправляет клиенту. Создаете чат-приложения Разработчики чат-приложений выбирают WebSocket для выполнения таких операций, как одноразовый обмен и публикация/трансляция сообщений. Для отправки/получения сообщений используется одно и то же WebSocket соединение, поэтому такая коммуникация считается простой и быстрой. Работаете над игровым приложением При разработке игрового приложения крайне важно, чтобы сервер постоянно получал данные, не запрашивая обновления пользовательского интерфейса. WebSocket позволяет достичь этой цели без вмешательства в интерфейс приложения. Теперь, когда стало ясно, для каких целей можно использовать WebSocket, стоит поговорить о том, когда стоит присмотреться к другим решениям. WebSocket – далеко не самый лучший вариант, когда вам нужно получить старые данные, либо же данные требуются только для разовой обработки. В таких случаях лучше ограничиться HTTP-протоколами. WebSocket или HTTP? Поскольку для связи между приложениями используется и HTTP, и WebSocket, люди часто путаются и не могут определиться. Ниже приведено подробное описание каждого из вариантов. Как уже говорилось, WebSocket является двунаправленным и фреймовым протоколом. HTTP – это, наоборот, однонаправленный протокол, работающий над TCP-протоколом. Протокол WebSocket поддерживает непрерывную передачу данных, поэтому часто используется в разработке приложений реального времени. HTTP не зависит от состояния и используется для создания RESTful-приложений.  Передача данных в WebSocket происходит в обе стороны, так что он считается довольно быстрым протоколом. HTTP проигрывает по скорости WebSocket, поскольку в этом протоколе соединение устанавливается с одной стороны. WebSocket использует унифицированное TCP-соединение. Пока один из участников не разорвет это соединение, оно будет активным. HTTP создает разные соединения для разных запросов. После выполнения запроса соединение разрывается автоматически.  Как устанавливается WebSocket-соединение Процесс начинается с «рукопожатия» (handshake), в котором используется новая схема ws или wss. Если проводить параллель, то это примерно то же, что HTTP и защищенный протокол HTTP (HTTPS). В этой схеме клиенты и серверы следуют стандартному протоколу подключения WebSocket. Установка WebSocket-соединения начинается с дополнения HTTP-запроса несколькими заголовками: Connection: Upgrade, Upgrade: WebSocket, Sec-WebSocket- Key и т.д..  Соединение устанавливается в следующие этапы: 1. Запрос Заголовок Connection: Upgrade указывает на WebSocket-рукопожатие, а в Sec-WebSocket-Key содержится случайное значение в кодировке Base64. Это значение произвольно генерируется во время каждого WebSocket-рукопожатия. Частью запроса также является и заголовок ключа. Все вышеперечисленные заголовки образуют GET HTTP-запрос. Он выглядит примерно так: GET ws://websocketexample.com:8181/ HTTP/1.1 Host: localhost:8181 Connection: Upgrade Pragma: no-cache Cache-Control: no-cache Upgrade: websocket Sec-WebSocket-Version: 13 Sec-WebSocket-Key: b6gjhT32u488lpuRwKaOWs== В Sec-WebSocket-Version отмечается версия WebSocket-протокола, которой может пользоваться клиент.  2.Ответ В заголовок ответа Sec-WebSocket-Accept попадает значение, отправленное в заголовке запроса Sec-WebSocket-Key. Ответ привязан к спецификации протокола и активно используется для устранения вводящей в заблуждение информации. Другими словами, такая структура улучшает безопасность API и блокирует некорректно настроенные сервера от создания ошибок при разработке приложения.  HTTP/1.1 101 Switching Protocols Upgrade: websocket Connection: Upgrade Sec-WebSocket-Accept: rG8wsswmHTJ85lJgAE3M5RTmcCE= WebSocket-протокол Протокол WebSocket – это тип фреймового протокола, который включает в себя различные дискретные блоки с данными. Для корректного функционирования в нем развертывается информационная часть пакета, тип фрейма и длина полезной нагрузки. Чтобы понять принципы работы WebSocket, необходимо разобраться, из чего он состоит. Ключевые элементы перечислены ниже. Бит FIN – это основная часть WebSocket. Он генерируется автоматически при создании подключения. ‍Биты RSV1, RSV2, RSV3 – эти биты зарезервированы для дополнительных возможностей. ‍Opcode – это часть каждого фрейма; объясняет процесс интерпретации данных полезной нагрузки для отдельного фрейма. Примеры распространенных значений: 0x00, 0x0, 0x02, 0x0a, 0x08 и т.д. БитMask активируется, когда один бит задан как 1. Для всех данных полезной нагрузки в WebSocket используется случайный ключ, выбранный клиентом. Ключ маски в сочетании с данными полезной нагрузки помогает обмениваться этими данными через операцию XOR. Это очень важно для безопасности API приложения, поскольку маскирование предотвращает неправильную интерпретацию кэша и т.н. «отравленный кэш». Разберем эти ключевые элементы подробнее. Длина полезной нагрузки Используется для кодирования общей длины данных полезной нагрузки в WebSocket. Отображается, когда закодированная длина данных меньше 126 битов. Если длина данных больше 126 битов, то для описания длины полезной нагрузки используются дополнительные поля.  Ключ маски Каждый фрейм, который клиент отправляет на сервер, маскируется 32-битным значением. Отображается, когда бит маски равен 1. Если бит маски равен 0, то ключ маски также будет нулевым.  Данные полезной нагрузки Все случайные данные приложения и расширения считаются данными полезной нагрузки. Эти данные используются клиентом и серверами для согласования и в процессе первых рукопожатий. Заключение WebSocket – это обновленный, быстрый и простой протокол для установки постоянной клиент-серверной связи. WebSocket гарантирует неразрывность подключения и высокую безопасность данных, даже при непрерывной передаче данных. Использование WebSocket предельно упрощает разработку приложений в режиме реального времени. В ряде случаев WebSocket проявляет себя лучше, чем HTTP, поскольку поддерживает дуплексную связь (например: сайты фондовой биржи, онлайн-игры, приложения для биткоинов, службы обмена сообщениями). WebSocket стал настоящим кладезем полезных возможностей при разработке. Он улучшает безопасность API и поддерживает множество ресурсов (после подключения к внешним библиотекам). Попробуйте заменить свои обычные протоколы обмена данными на WebSocket и оцените его преимущества.
img
Под телефонными (VoIP) кодеками понимаются различные математические модели используемые для цифрового кодирования и компрессирования (сжатия) аудио информации. Многие из современных кодеков используют особенности восприятия человеческим мозгом неполной информации: алгоритмы голосового сжатия пользуются этими особенностями, вследствие чего не полностью услышанная информация полностью интерпретируется головным мозгом. Основным смыслом таких кодеков является сохранение баланса между эффективностью передачи данных и их качеством. Изначально, термин кодек происходил от сочетания слов КОДирование/ДЕКодирование, то есть устройств, которые преобразовывали аналог в цифровую форму. В современном мире телекоммуникаций, слово кодек скорее берет начало от сочетания КОмпрессия/ДЕКомпрессия. Перед тем как начать подробный рассказ про различные кодеки, мы составили таблицу со краткой сравнительной характеристикой современных кодеков: Кодек Скорость передачи, Кб/сек. Лицензирование G.711 64 Кб/сек. Нет G.726 16, 24, 32 или 40 Кб/ сек. Нет G.729А 8 Кб/ сек. Да GSM 13 Кб/ сек. Нет iLBC 13.3 Кб/ сек. (30 мс фрейма); 15.2 Кб/ сек. (20 мс фрейма) Нет Speex Диапазон от 2.15 до 22.4 Кб/ сек. Нет G.722 64 Кб/сек. Нет G.711 Кодек G.711 это самый базовый кодек ТфОП (PSTN). В рамках данного кодека используется импульсно-кодовая модуляция PCM. Всего в мире используется 2 метода компандирования (усиления сигнала) G.711: µ – закон в Северной Америке и A – закон в остальной части мира. Данный кодек передает 8 – битное слово 8 000 раз в секунду. Если умножить 8 на 8 000, то получим 64 000 бит – то есть 64 Кб/с, скорость потока, создаваемого G.711. Многие люди скажут, что G.711 это кодек, в котором отсутствует компрессирование (сжатие), но это не совсем так: сам по себе процесс компандирования является одной из форм компрессирования. Все мировые кодеки «выросли» на базе G.711. Важная особенность G.711 в том, что он минимально загружает процессор машины, на которой он запущен. G.726 Этот кодек использовался некоторое время, став заменой для G.721, который на тот момент устарел, и является одним из первых кодеков с алгоритмом компрессии. Он так же известен как кодек с адаптивной импульсно-кодовой модуляции (Adaptive Differential Pulse-Code Modulation, ADPCM) и может использовать несколько скоростей потока передачи. Наиболее распространенные скорости передачи это 16, 24 и 32 Кб/сек. Кодек G.726 почти идентичен G.711 – единственным отличием является то, что он использует половину полосы пропускания. Это достигается путем того, что вместо отправки полного результата квантования, он отправляет только разницу между двумя последними измерениями. В 1990 году от кодека практически отказались, так как он не мог работать с факсимильными сигналами и модемами. Но в наше время, из – за своей экономии полосы пропускания и ресурсов центрального процессора у него есть все шансы вновь стать популярные кодеком в современных сетях. G.729A Учитывая то, какую малую полосу пропускания использует G.729A, всего 8 Кб/сек., он обеспечивает превосходное качество связи. Это достигается за счет использования сопряженной структуры с управляемым алгебраическим кодом и линейным предсказанием (Conjugate-Structure Algebraic-Code-Excited Linear Prediction, CS-ACELP). По причине патента, использование данного кодека является коммерческим; однако это не мешает кодеку G.729A быть популярным в различных корпоративных сетях и телефонных системах. Для достижения такой высокой степени сжатия, G.729A активно задействует мощности процессора (CPU). GSM Кодек для глобального стандарта цифровой мобильной сотовой связи (Global System for Mobile Communications, GSM) не обременен лицензированием, как его аналог G.729A, но предлагает высокое качество и умеренную нагрузку на процессор при использовании 13 Кб/сек. полосы пропускания. Эксперты считают, что качество GSM несколько ниже чем G.729A. iLBC Кодек iLBC (Internet Low Bitrate Codec) сочетает в себе низкое использование полосы пропускания и высокого качества. Данный кодек идеально подходит для поддержания высокого качества связи в сетях с потерями пакетов. iLBC не так популярен как кодеки стандартов ITU и поэтому, может быть не совместим с популярными IP – телефонами и IP – АТС. Инженерный совет Интернета (IETF) выпустил RFC 3951 и 3952 в поддержку кодека iLBC. Internet Low Bitrate кодек использует сложные алгоритмы для достижения высокого показателя сжатия, поэтому, весьма ощутимо загружает процессор. В настоящий момент iLBC используется бесплатно, но владелец этого кодека, Global IP Sound (GIPS), обязует уведомлять пользователей о намерении коммерческого использования этого кодека. Кодек iLBC работает на скорости в 13.3 Кб/сек. с фреймами в 30 мс, и на скорости 15.2 кб/сек. с фреймами в 20 мс. Speex Кодек Speex относится к семейству кодеков переменной скорости (variable-bitrate, VBR), что означает возможность кодека динамически менять скорость передачи битов в зависимости от статуса производительности сети передачи. Этот кодек предлагается в широкополосных и узкополосных модификациях, в зависимости от требования к качеству. Speex полностью бесплатный и распространяется под программной лицензией университета Беркли (Berkeley Software Distribution license, BSD). Кодек работает на диапазонах от 2.15 до 22.4 Кб/сек. в рамках переменного битрейта. G.722 G.722 является стандартом ITU-T (International Telecommunication Union - Telecommunication sector) и впервые опубликован в 1988 году. Кодек G.722 позволяет обеспечить качество, не ниже G.711 что делает его привлекательным для современных VoIP разработчиков. В настоящий момент патент на G.722 не действителен, и этот кодек является полностью бесплатным.
ВЕСЕННИЕ СКИДКИ
40%
50%
60%
До конца акции: 30 дней 24 : 59 : 59