По вашему запросу ничего не найдено :(
Убедитесь, что запрос написан правильно, или посмотрите другие наши статьи:
img
В этой статье рассматривается OSPF и все проблемы, которые могут возникнуть с этим протоколом. OSPF отличается от EIGRP протоколом состояния канала, но общим для них является то, что оба протокола маршрутизации устанавливают соседство до обмена информацией о маршрутизации. В случае OSPF мы обмениваемся LSA (объявление о состоянии канала), чтобы создать LSDB (база данных о состоянии канала). Наилучшая информация из LSDB будет скопирована в таблицу маршрутизации. В этой части мы начнем с устранения неполадок соседей OSPF. Как только у нас есть рабочее соседство OSPF, мы рассмотрим другие проблемы, такие как отсутствующие маршруты. Full просмотр соседства OSPF При просмотре соседства OSPF, мы видим, что оно сообщает нам Full. Необходимо больше информации для понимания состояния Full. Если смежность соседства OSPF не полная, мы рассматриваем одно из следующих состояний: Соседей нет вообще Оно "залипло" в ATTEMPT. Оно "залипло" в INIT. Оно "залипло" в 2-WAY. Оно "залипло" в EXSTART/EXCHANGE. Оно "залипло" в LOADING. Давайте начнем и рассмотрим разные ситуации, которые могут возникнуть с соседством OSPF! Видео: протокол OSPF (Open Shortest Path First) за 8 минут Урок 1 у нас есть 2 маршрутизатора Мы начнем со сценариев, когда OSPF вообще не имеет соседства. В приведенном выше примере у нас есть 2 маршрутизатора. нет никакого OSPF соседства Как вы можете видеть, у нас нет никакого OSPF соседства, что может быть не так? show ip ospf interface show ip ospf interface Можно было просто посмотреть на текущую конфигурацию и выяснить, что не так, но мы не ищем простых путей. Мы используем другие полезные команды OSPF. Сначала используем команду show ip ospf interface. Мы видим, что OSPF не включен на интерфейсе FastEthernet 0/0 R1, но он работает на R2. Кто-то допустил ошибку с командой network и набрал неверный сетевой адрес Кто-то допустил ошибку с командой network и набрал неверный сетевой адрес ... простая ошибка, но такие вещи случаются. R1(config)#router ospf 1 R1(config-router)#no network 192.168.21.0 0.0.0.255 area 0 R1(config-router)#network 192.168.12.0 0.0.0.255 area 0 Настройка правильного сетевого адреса и обратной маски устраняет эту ошибку. Настройка правильного сетевого адреса Проблема решена. Соседство OSPF установлено. Это было легкое начало... Итог урока: проверьте правильность настройки сетевого адреса, обратной маски и области. Урок 2 2 маршрутизатора, но проблема другая Очередная проблема. Схема аналогичная: 2 маршрутизатора, но проблема другая. нет никакого соседства OSPF Как вы видите, нет никакого соседства OSPF. Протокол OSPF был включен на интерфейсе обоих маршрутизаторов Протокол OSPF был включен на интерфейсе обоих маршрутизаторов, поэтому мы знаем, что был использован правильный тип сети. Однако если вы внимательно посмотрите на R1, то увидите, что на нем написано "No Hellos (Пассивный интерфейс)". Если вы настроите пассивный интерфейс, то сеть на интерфейсе все равно будет объявлена, но она не будет отправлять приветственные пакеты OSPF. Таким образом, невозможно создать соседство OSPF. невозможно создать соседство OSPF Вот она проблема. R1(config)#router ospf 1 R1(config-router) #no passive-interface Fe0/0 Удалим пассивный интерфейс. Удалим пассивный интерфейс Соседство OSPF работает. Проблема устранена! Итог урока: проверьте, что OSPF отправляет приветственные пакеты на интерфейс, поскольку, в противном случае, вы не сможете создать соседство. Урок 3 те же маршрутизаторы, другая проблема Следующий сценарий с теми же маршрутизаторами, но другая проблема. R1 показывает, что наш сосед OSPF находится в состоянии INIT R2 ничего не показывает Интересно... R1 показывает, что наш сосед OSPF находится в состоянии INIT, а R2 ничего не показывает. OSPF был правильно настроен на обоих интерфейсах OSPF был правильно настроен на обоих интерфейсах Как мы видим, в примере выше OSPF был правильно настроен на обоих интерфейсах. Поскольку R1 показывает состояние INIT, мы можем сделать вывод, что он получает что-то от R2. R2 ничего не показывает, поэтому, вероятно, ничего не получает от R1. OSPF использует пакеты приветствия для установления соседства OSPF, и они отправляются с использованием многоадресного адреса 224.0.0.5. можем ли мы пропинговать адрес многоадресной рассылки можем ли мы пропинговать адрес многоадресной рассылки Рекомендуется проверить, можем ли мы пропинговать адрес многоадресной рассылки, который OSPF использует для пакетов приветствия. Мы видим, что R1 и R2 оба не получают ответа. Отправка эхо-запросов друг другу проходят без проблем Отправка эхо-запросов друг другу проходят без проблем Отправка эхо-запросов друг другу проходят без проблем. Так что может вызвать проблемы с отправкой и получением многоадресного трафика OSPF? Как насчет списка доступа? на R2 имеется входящий список доступа на R2 имеется входящий список доступа Мы что-то нашли. И это то, что на R2 имеется входящий список доступа с именем BLOCKSTUFF. в нижней части access-list имеется данный запрет Список доступа разрешает только TCP, UDP и ICMP трафик. OSPF не использует TCP или UDP, и он удаляется этим списком доступа из-за deny any. Мы этого не видим в верхнем листинге, но в нижней части access-list имеется данный запрет. R2(config)#ip access-list extended BLOCKSTUFF R2(config-ext-nacl)#5 permit ospf any any проведем коррекцию Проведем коррекцию access-list, чтобы был разрешен трафик OSPF. теперь она отображается как Full Проблема решена, теперь она отображается как Full. теперь можно пинговать адрес многоадресной рассылки 224.0.0.5 OSPF теперь можно пинговать адрес многоадресной рассылки 224.0.0.5 OSPF Ну что, теперь можно пинговать адрес многоадресной рассылки 224.0.0.5 OSPF. Мы видим ответ с другой стороны. Итог урока: не блокируйте многоадресные адреса OSPF 224.0.0.5 и 224.0.0.6 (DR / BDR). Урок 4 от же сценарий, другая проблема Это еще не все! Тот же сценарий, другая проблема: Соседство OSPF отсутствует, но мы видим, что OSPF был включен на интерфейсе Соседство OSPF отсутствует, но мы видим, что OSPF был включен на интерфейсе Соседство OSPF отсутствует, но мы видим, что OSPF был включен на интерфейсе Соседство OSPF отсутствует, но мы видим, что OSPF был включен на интерфейсе Соседство OSPF отсутствует, но мы видим, что OSPF был включен на интерфейсе. Пинг на адреса многоадресной рассылки проходит Пинг на адреса многоадресной рассылки проходит Пинг на адреса многоадресной рассылки проходит, так что это уже хорошо. Это хороший момент для включения отладки, чтобы узнать, что происходит: что происходит за кулисами Это очень полезная отладка, которая позволяет увидеть, что происходит за кулисами. сбросим процесс OSPF Мы сбросим процесс OSPF, чтобы ускорить отладку. Имейте в виду, что вы также можете сбросить только одно соседство OSPF. Это лучшая идея, если это применяется в производственной сети (сети предприятия или организации). R1 говорит, что он получил пакет Теперь нам есть с чем работать. R1 говорит, что он получил пакет hello, но у нас есть несоответствующие параметры hello. R означает то, что мы получили, а C - что мы настроили. Как мы видим, существует несоответствие в маске подсети. R1 настроен с маской подсети 255.255.255.0, в то время как R2 имеет маску подсети 255.255.255.128. OSPF будет сравнивать маску подсети только в том случае, если вы используете широковещательный тип сети. show ip ospf interface show ip ospf interface Можно использовать команду show ip ospf interface для проверки типа сети, и видно, что она является broadcast. Здесь мы видим, что R2 имеет другую маску подсети Здесь мы видим, что R2 имеет другую маску подсети Здесь мы видим, что R2 имеет другую маску подсети. Необходимо это исправить! R2(config)#interface Fe0/0 R2(config-if)#ip address 192.168.12.2 255.255.255.0 Достаточно просто... соседство OSPF работает соседство OSPF работает Теперь мы видим, соседство OSPF работает. Итог урока: проверьте правильность использования одинаковых масок подсетей на маршрутизаторах, которые напрямую связаны друг с другом. Урок 5 Та же топология, и у нас очередная проблема с пакетами hello Давайте продолжим, но уже со следующей ошибкой. Та же топология, и у нас очередная проблема с пакетами hello. Сразу перейдем к отладочной части: проблема похожа на наш последний сценарий Эта проблема похожа на наш последний сценарий. Есть часть параметров, которые должны совпадать в hello-пакете, чтобы создать соседство OSPF. dead-interval на R1 сконфигурирован на 24 секунды, а на R2 - на 11 секунд. hello-interval сконфигурирован на 10 секунд на R2 и 6 секунд на R1. Поменяем настройки параметров: R1(config)#interface Fe0/0 R1(config-if)#ip ospf hello-interval 10 R1(config-if)#ip ospf dead-interval 11 Нам нужно изменить это на уровне интерфейса. Введенные команды с новыми параметрами Введенные команды с новыми параметрами решают нашу проблему. Соседство OSPF работает. Урок 6 Топология Еще одна проблема, с которой нам, возможно, придется столкнуться, это аутентификация. OSPF предлагает 3 метода аутентификации: без аутентификации Plaintext MD5 аутентификация нет соседей OSPF нет соседей OSPF Как мы видим, у нас нет соседей OSPF. Давайте используем debug: Debug ip ospf adj Debug ip ospf adj поможет нам решить эти неполадки. Видно, что мы получаем пакет с аутентификацией типа 2, а используется тип 0. Вот что это значит: Type 0: нет аутентификации. Type 1: plaintext аутентификация. Type 2: MD5 аутентификация. Соответственно - R1 сконфигурирован без аутентификации, а R2 сконфигурирован на использование аутентификации MD5. R2 сконфигурирован на использование аутентификации MD5 Мы также можем посмотреть информацию OSPF для каждого интерфейса, чтобы увидеть, включена ли аутентификация или нет. включена ли аутентификация или нет Это то, что настроено на интерфейсе R2. R1(config)#interface FastEthernet0/0 R1(config-if)#ip ospf authentication message-digest R1(config-if)#ip ospf message-digest-key 1 md5 MYKEY Мы копируем и вставляем его в R1. копируем и вставляем его в R1 Проблема устранена! Если вам интересно, вот что вы увидите, когда задан неправильный пароль на одном из маршрутизаторов: R1(config)#interface FastEthernet0/0 R1(config-if)#no ip ospf message-digest-key 1 md5 MYKEY R1(config-if)#ip ospf message-digest-key 1 md5 WRONGKEY Сначала мы поменяем ключ: отладчик говорит нам, что мы используем неправильный ключ Наш отладчик говорит нам, что мы используем неправильный ключ между нашими маршрутизаторами. Извлеченный урок: убедитесь, что вы используете один и тот же тип аутентификации OSPF и пароль между маршрутизаторами. Урок 7 Тот же сценарий Что еще может пойти не так? Кажется, что нет никаких проблем, связанных с соседством OSPF! Тот же сценарий, теперь другая проблема: Соседство отсутствует OSPF Соседство отсутствует OSPF OSPF-соседство отсутствует. есть несоответствие в номере области На одном из наших маршрутизаторов появилось сообщение. Оно не требует объяснений, похоже, у нас есть несоответствие в номере области. R1 настроен для области 1, а R2 настроен для области 0 R1 настроен для области 1, а R2 настроен для области 0 R1 настроен для области 1, а R2 настроен для области 0. Исправляем: network R1(config)#router ospf 1 R1(config-router)#no network 192.168.12.0 0.0.0.255 area 1 R1(config-router)#network 192.168.12.0 0.0.0.255 area 0 Мы используем команду network, чтобы задать правильный номер области. network Ура, все работает! Итог урока: убедитесь, что ваши маршрутизаторы OSPF согласовывают один и тот же номер области. Урок 8 а этот раз R1 и R2 находятся в одной зоне 1 Рисунок выше слегка отличается от предыдущего. На этот раз R1 и R2 находятся в одной зоне 1. нет соседей нет соседей Вот так сюрприз... нет соседей! Запускаем отладку: Запускаем отладку Очень интересно! Существует несоответствие в опции stub/transit area. OSPF имеет различные типы областей, и оба маршрута должны согласовываться с типом области (stub, nssa, totally stub и totally nssa). R1, по-видимому, настроен на использование normal area R1, по-видимому, настроен на использование normal area. R2, похоже, настроен на использование stub area R2, похоже, настроен на использование stub area. Несоответствие в типе области означает, что мы не можем установить соседство OSPF. R2 имеет команду area 1 stub На листинге выше мы видим, что R2 имеет команду area 1 stub. Удалим ее. R2(config)#router ospf 1 R2(config-router)#no area 1 stub Изменим область 1 на normal area для R2. Изменим область 1 на normal area для R2 Изменим область 1 на normal area для R2 Итог урока: убедитесь, что ваши маршрутизаторы OSPF используют один и тот же тип области. Урок 9 Очередная ситуация с неполадками с OSPF Очередная ситуация с неполадками в OSPF, которая на первый взгляд кажется очень запутанной. Давайте посмотрим на конфигурацию OSPF обоих маршрутизаторов: посмотрим на конфигурацию OSPF обоих маршрутизаторов посмотрим на конфигурацию OSPF обоих маршрутизаторов Это простая конфигурация. таблица соседства OSPF не пустая таблица соседства OSPF не пустая У нас таблица соседства OSPF не пустая, но оба маршрутизатора "застряли" в состоянии 2WAY. Помимо поиска нужного нам слова "FULL", следует обратить внимание на две вещи, отображаемые командой show: Оба маршрутизатора показывают друг друга как DROTHER. Приоритет для обоих маршрутизаторов равен 0. В multi-access сети, такой как Ethernet, OSPF будет выполнять выборы DR/BDR, если тип сети broadcast или non-broadcast. Проверяем тип сети: Оба интерфейса настроены для типа сети broadcast Оба интерфейса настроены для типа сети broadcast Оба интерфейса настроены для типа сети broadcast. Это значение по умолчанию для интерфейсов Ethernet. Это означает, что у нас есть выборы DR/BDR, но оба маршрутизатора настроены на приоритет 0, а это означает, что они не будут участвовать в выборах DR/BDR. По этой причине они застряли в состоянии 2WAY. Необходимо это исправить: R1(config)#interface fastEthernet 0/0 R1(config-if)#ip ospf priority 1 Мы изменим приоритет на одном из маршрутизаторов. Мы видим, что R1 был выбран для DR Мы видим, что R1 был выбран для DR Все работает. Мы видим, что R1 был выбран для DR, потому что он имеет приоритет 1. Итог урока: Типы широковещательной и не вещательной сети требуют выбора DR/BDR. Убедитесь, что один из маршрутизаторов выбран. В следующей статье мы разберем еще 8 уроков траблшутинга OSPF.
img
Linux поддерживает множество файловых систем, таких как ext4, ZFS, XFS, Btrfs, Reiser4 и другие. Различные типы файловых систем решают разные проблемы, и их использование зависит от приложения. Что такое файловая система Linux Почти каждый бит данных и программ, необходимых для загрузки системы Linux и поддержания ее работы, сохраняется в файловой системе. Например, сама операционная система, компиляторы, прикладные программы, разделяемые библиотеки, файлы конфигурации, файлы журналов, точки монтирования мультимедиа и т.д. Файловые системы работают в фоновом режиме. Как и остальная часть ядра операционной системы, они практически невидимы при повседневном использовании. Файловая система Linux обычно представляет собой встроенный уровень операционной системы Linux, используемый для управления данными хранилища. Он контролирует, как данные хранятся и извлекаются. Он управляет именем файла, размером файла, датой создания и другой информацией о файле. Файловая система ext4 В 1992 году была запущена файловая Extended File System или ext специально для операционной системы Linux. Она уходит своими корнями в операционную систему Minix. В 1993 году было выпущено обновление под названием Extended File System 2 или ext2, которое в течение многих лет было файловой системой по умолчанию во многих дистрибутивах Linux. К 2001 году ext2 была обновлена до ext3, которая ввела журналирование для защиты от повреждений в случае сбоев или сбоев питания. Ext4 была представлена в 2008 году и является файловой системой Linux по умолчанию с 2010 года. Она была разработана как прогрессивная версия файловой системы ext3 и преодолевает ряд ограничений в ext3. Она имеет значительные преимущества перед своим предшественником, такие как улучшенный дизайн, лучшая производительность, надежность и новые функции. В настоящее время ext4 является файловой системой по умолчанию в большинстве дистрибутивов Linux. Она может поддерживать файлы и файловые системы размером до 16 терабайт. Она также поддерживает неограниченное количество подкаталогов (файловая система ext3 поддерживает только до 32 000). Кроме того, ext4 обратно совместима с ext3 и ext2, что позволяет монтировать эти старые версии с драйвером ext4. Есть причина, по которой ext4 является выбором по умолчанию для большинства дистрибутивов Linux. Она опробована, протестирована, стабильна, отлично работает и широко поддерживается. Если вам нужна стабильность, ext4 - лучшая файловая система Linux для вас. Однако несмотря на все свои функции, ext4 не поддерживает прозрачное сжатие, прозрачное шифрование или дедупликацию данных. Файловая система XFS XFS - это высокомасштабируемая файловая система, разработанная Silicon Graphics и впервые развернутая в операционной системе IRIX на базе Unix в 1994 году. Это файловая система с журналированием которая отслеживает изменения в журнале перед фиксацией изменений в основной файловой системе. Преимущество заключается в гарантированной целостности файловой системы и ускоренном восстановлении в случае сбоев питания или сбоев системы. Первоначально XFS была создана для поддержки чрезвычайно больших файловых систем с размерами до 16 эксабайт и размером файлов до 8 эксабайт. Она имеет долгую историю работы на больших серверах и массивах хранения. Одной из примечательных особенностей XFS является гарантированная скорость ввода-вывода. Это позволяет приложениям зарезервировать пропускную способность. Файловая система рассчитывает доступную производительность и корректирует свою работу в соответствии с существующими резервированиями. XFS имеет репутацию системы, работающей в средах, требующих высокой производительности и масштабируемости, и поэтому регулярно оценивается как одна из самых производительных файловых систем в больших системах с корпоративными рабочими нагрузками. Сегодня XFS поддерживается большинством дистрибутивов Linux и теперь стала файловой системой по умолчанию в Red Hat Enterprise Linux, Oracle Linux, CentOS и многих других дистрибутивах. Лучшие варианты использования файловой системы XFS У вас большой сервер? У вас большие требования к хранилищу или у вас есть локальный медленный диск SATA? Если и ваш сервер, и ваше устройство хранения большие и нет необходимости уменьшать размер файловой системы, XFS, вероятно, будет лучшим выбором. XFS - отличная файловая система, которая хорошо масштабируется для больших серверов. Но даже с меньшими массивами хранения XFS работает очень хорошо, когда средние размеры файлов велики, например, размером в сотни мегабайт. Файловая система btrfs Btrfs - это файловая система Linux общего назначения нового поколения, которая предлагает уникальные функции, такие как расширенное интегрированное управление устройствами, масштабируемость и надежность. Он распространяется под лицензией GPL и открыт для внесения вклада кем угодно. Для файловой системы используются разные имена, в том числе «Butter FS», «B-tree FS» и «Better FS». Разработка Btrfs началась в Oracle в 2007 году. Она была объединена с основным ядром Linux в начале 2009 года и дебютировала в версии Linux 2.6.29. Btrfs не является преемником файловой системы ext4 по умолчанию, используемой в большинстве дистрибутивов Linux, но предлагает лучшую масштабируемость и надежность. Btrfs - это файловая система с копированием при записи (Copy-on-Write - CoW), предназначенная для устранения различных недостатков в текущих файловых системах Linux. Основное внимание уделяется отказоустойчивости, самовосстановлению и простоте администрирования. Btrfs может поддерживать до 16 эксбибайт раздела и файл того же размера. Если вас смущают цифры, все, что вам нужно знать, это то, что Btrfs может поддерживать до шестнадцати раз больше данных Ext4. Как работает Copy-on-Write и зачем вам это нужно В традиционной файловой системе при изменении файла данные считываются, изменяются, а затем записываются обратно в то же место. В файловой системе с копией при записи он считывает данные, изменяет их и записывает в новое место. Это предотвращает потерю данных во время транзакции чтения-изменения-записи, поскольку данные всегда находятся на диске. Поскольку вы не «перенаправляете» до тех пор, пока новый блок не будет полностью записан, если пропадет питание или выйдет из строя в середине записи, вы получите либо старый блок, либо новый блок, но не наполовину записанный поврежденный блокировать. Таким образом, вам не нужно проверять файловые системы при запуске, и вы снижаете риск повреждения данных. Вы можете сделать снимок файловой системы в любой момент, создав запись снимка в метаданных с текущим набором указателей. Это защищает старые блоки от последующего сбора мусора и позволяет файловой системе представить том в том виде, в котором он был во время моментального снимка. Другими словами, у вас есть возможность мгновенного отката. Вы даже можете клонировать этот том, чтобы сделать его доступным для записи на основе снимка. Особенности Btrfs Copy-on-Write и создание снепшотов - Сделайте инкрементное резервное копирование безболезненным даже из файловой системы в процессе работы или виртуальной машины (VM). Контрольные суммы на уровне файла - метаданные для каждого файла включают контрольную сумму, которая используется для обнаружения и исправления ошибок. Сжатие - файлы можно сжимать и распаковывать "на лету", что увеличивает скорость чтения. Автоматическая дефрагментация - файловые системы настраиваются фоновым потоком, пока они используются. Подтомы - файловые системы могут совместно использовать единый пул пространства вместо того, чтобы помещаться в свои собственные разделы. RAID - Btrfs выполняет свои собственные реализации RAID, поэтому LVM или mdadm не требуются для наличия RAID. В настоящее время поддерживаются RAID 0, 1 и 10. RAID 5 и 6 считаются нестабильными. Разделы необязательны - хотя Btrfs может работать с разделами, он может напрямую использовать необработанные устройства (/dev/<device>). Дедупликация данных - поддержка дедупликации данных ограничена; однако дедупликация со временем станет стандартной функцией Btrfs. Это позволяет Btrfs экономить место, сравнивая файлы через двоичные файлы diff. Хотя это правда, что Btrfs все еще считается экспериментальным и в настоящее время находится в активной разработке, время, когда Btrfs станет файловой системой по умолчанию для систем Linux, приближается. Некоторые дистрибутивы Linux уже начали переходить на него в своих текущих выпусках. Файловая система ZFS ZFS (Zettabyte File System) остается одной из наиболее технически продвинутых и полнофункциональных файловых систем с момента ее появления в октябре 2005 года. Это локальная файловая система (например, ext4) и менеджер логических томов (например, LVM), созданные Sun Microsystems. ZFS публиковалась под лицензией с открытым исходным кодом, пока Oracle не купила Sun Microsystems и не закрыла лицензию. Вы можете думать о ZFS как о диспетчере томов и как о RAID-массиве одновременно, что позволяет добавлять дополнительные диски к вашему тому ZFS, что позволяет одновременно добавить дополнительное пространство в вашу файловую систему. В дополнение к этому ZFS обладает некоторыми другими функциями, которых нет в традиционных RAID. ZFS сильно зависит от памяти, поэтому для запуска вам потребуется не менее 8 ГБ. На практике используйте столько, сколько можете получить в соответствии с вашим аппаратным обеспечением или бюджетом. ZFS обычно используется сборщиками данных, пользователями NAS и другими гиками, которые предпочитают полагаться на собственную избыточную систему хранения, а не на облако. Это отличная файловая система для управления несколькими дисками с данными, которая может соперничать с некоторыми из лучших конфигураций RAID. ZFS похожа на другие подходы к управлению хранилищем, но в некотором смысле радикально отличается. ZFS обычно не использует Linux Logical Volume Manager (LVM) или разделы диска, и обычно удобно удалять разделы и структуры LVM перед подготовкой носителя для zpool. Zpool - это аналог LVM. Zpool охватывает одно или несколько устройств хранения, а члены zpool могут быть нескольких различных типов. Основные элементы хранения - одиночные устройства, зеркала и raidz. Все эти элементы хранения называются vdevs. ZFS может обеспечить целостность хранилища намного лучше, чем любой RAID-контроллер, поскольку он досконально знает структуру файловой системы. Безопасность данных - важная особенность конструкции ZFS. Все блоки, записанные в zpool, тщательно проверяются контрольной суммой для обеспечения согласованности и правильности данных. Для использования на сервере, где вы хотите почти полностью исключить любую возможность потери данных и стабильности, вы можете изучить ZFS. Возможности ZFS Бесконечная масштабируемость. Что ж, технически она не бесконечна, но это 128-битная файловая система, способная управлять зеттабайтами (одним миллиардом терабайт) данных. Поэтому независимо от того, сколько у вас места на жестком диске, ZFS подойдет для управления им. Максимальная целостность. Все, что вы делаете внутри ZFS, использует контрольную сумму для обеспечения целостности файла. Вы можете быть уверены, что ваши файлы и их резервные копии не испытают скрытого повреждения данных. Кроме того, пока ZFS незаметно проверяет целостность ваших данных, она будет выполнять автоматическое восстановление в любое время. Объединение дисков. Создатели ZFS хотят, чтобы вы думали об этом как о том, как ваш компьютер использует оперативную память. Когда вам нужно больше памяти на вашем компьютере, вы вставляете другую карту, и все готово. Точно так же с ZFS, когда вам нужно больше места на жестком диске, вы вставляете другой жесткий диск, и все готово. Не нужно тратить время на разбиение на разделы, форматирование, инициализацию или что-то еще с вашими дисками. Если вам нужен «пул» хранилища большего размера, просто добавьте диски. RAID. ZFS поддерживает множество различных уровней RAID, обеспечивая при этом производительность, сравнимую с производительностью аппаратных RAID-контроллеров. Это позволяет сэкономить деньги, упростить настройку и получить доступ к превосходным уровням RAID, которые были улучшены в ZFS. Файловая система Reiser4 ReiserFS - это файловая система общего назначения с журналированием, первоначально разработанная и реализованная командой Namesys во главе с Хансом Райзером. Представленная в версии 2.4.1 ядра Linux, это была первая файловая система с журналированием, включенная в стандартное ядро. За исключением обновлений безопасности и исправлений критических ошибок, Namesys прекратила разработку ReiserFS. Reiser4 является преемницей файловой системы ReiserFS. Добавилось шифрование, улучшил производительность и многое другое. Reiser4 обеспечивает наиболее эффективное использование дискового пространства среди всех файловых систем во всех сценариях и рабочих нагрузках. ReiserFS предлагает преимущества перед другими файловыми системами, особенно когда дело доходит до обработки большого количества небольших файлов. Она поддерживает ведение журнала для быстрого восстановления в случае возникновения проблем. Структура файловой системы основана на деревьях. Кроме того, Reiser4 потребляет немного больше ресурсов ЦП, чем другие файловые системы. Reiser4 обладает уникальной способностью оптимизировать дисковое пространство, занимаемое небольшими файлами (менее одного блока). Они полностью хранятся в своем индексном дескрипторе, без выделения блоков в области данных. Помимо реализации традиционных функций файловой системы Linux, reiser4 предоставляет пользователям ряд дополнительных возможностей: прозрачное сжатие и шифрование файлов, полное ведение журнала данных, а также практически неограниченную (с помощью архитектуры подключаемых модулей) расширяемость. Однако в настоящее время нет поддержки прямого ввода-вывода (началась работа по реализации), квот и POSIX ACL.
img
Windows Sandbox - это облегченная функция, используется для безопасного изолированного запуска приложений. Такой функционал поставляется в версиях Windows 10 Pro и Enterprise. Песочницу Windows можно включить с помощью добавления/удаления компонентов Windows, доступного из Панели управления. С чего начать? Эта функция под названием Гипервизор (виртуальная машина), созданная Microsoft для изолированного запуска совершенно другой ОС поверх текущей Операционной системы. Поскольку использование виртуальных машин требуют большей скорости обработки, а также ресурсов, которые потребляются в текущей ОС Windows желательно использовать быстрый диск и большой объем оперативной памяти. Аппаратные и программные требования для использования Windows Sandbox: Windows 10 Pro или Enterprise версии 4 GB ОЗУ (желательно от 8 GB) Процессор x64 разрядный, поддерживающий аппаратную виртуализацию 1GB на жестком диске свободного места Из-за небольших требований и возникла концепция создания Windows Sandbox. Песочница позволяет запускать небольшие приложения изолированно. Он действует как контейнер для запуска приложения поверх текущей ОС, не потребляя много ресурсов по сравнению с гипервизором. Зачем использовать песочницу или почему это хорошо для домашнего пользователя? Использование Sandbox позволяет конечному пользователю без страха запускать любое приложение на компьютере. Если хотите установить новое приложение, понять, как оно работает, или стоит выбор между несколькими однотипными приложениями. И вы скептически относитесь к тому, как это может повлиять на вашу текущую ОС. Sandbox позволяет установить и протестировать программу. Windows Sandbox загружается быстро, имеет встроенную графическую оболочку и не требует дополнительных действий и настроек для запуска. Кроме того, при каждом запуске она будет запускаться как новая версия Windows 10. И как только окно песочницы закрывается, система удаляет все связанные файлы этой программы, а также удаляет все сохраненные для нее данные. Следовательно, это никак не повлияет на основную операционную систему. Как включить Windows Sandbox в Windows 10? Этот компонент доступен для установки только в Windows 10 Pro или Enterprise версии 1903 и новее. Поэтому, чтобы начать использовать Sandbox, убедитесь, что используете актуальную версию Windows 10, иначе, предварительно обновите систему до новейшей версии через Центр обновления. Если у вас версия Windows 10 Pro 1903 или Enterprise, для активации песочницы нужно выполнить следующие шаги: Нажмите «Старт» -> введите «Включение или отключение компонентов Windows» -> нажмите «Enter» Откроется окно «Компоненты Windows» Найдите в списке и отметьте галочкой «Песочница Windows» Нажмите «OK» Система выполнит поиск необходимых файлов и применит их, по завершении процесса попросит перезагрузить компьютер. После перезагрузки в меню «Пуск» появится Песочница Windows Как использовать Windows Sandbox? В меню «Пуск» найдите «Песочница Windows», запустите ее. Добавить тестовое приложение в Песочницу можно двумя способами. В виртуальном окружении (Песочнице) открыть браузер и скачать программу из Интернета и установить. Второй вариант – скопировать программу с основной системы и вставить в виртуальную. После того, как среда Window Sandbox будет закрыта, система удалит все загруженные программы и ее данные. Как работает песочница в Windows 10. Windows Sandbox - это более легкая версия Hyper-V. Поскольку гипервизор работает под управлением ОС следовательно, Sandbox требует наличия собственной ОС для запуска и выполнения различных задач. Ключевое преимущество использования Windows Sandbox по сравнению с виртуальной машиной заключается в том, что новая копия ОС запускается каждый раз при открытии Песочницы. Копия образа Windows 10 сохраняется как «Базовый динамический образ» и используется, когда включена функция Windows Sandbox. Динамическое базовый образ сохраняет новую копию Windows 10 и загружается всякий раз, когда окно песочницы закрывается и снова открывается. Любое приложение можно установить или протестировать в Windows Sandbox. Приложения с тяжелой графикой могут также проверять в реальном времени, не влияя на текущую ОС.
ВЕСЕННИЕ СКИДКИ
40%
50%
60%
До конца акции: 30 дней 24 : 59 : 59