По вашему запросу ничего не найдено :(
Убедитесь, что запрос написан правильно, или посмотрите другие наши статьи:
img
На сервера с системами семейства Linux всегда направлен большой уровень атак и сканирования портов В то время как правильно настроенный фаервол и регулярные обновления системы безопасности добавляют дополнительный уровень безопасности системы, вы также должны следить, не смог ли кто-нибудь пробраться через них. Инструменты, представленные в этой статье, созданы для этих проверок безопасности и могут идентифицировать вирусы, вредоносные программы, руткиты и вредоносные поведения. Вы можете использовать эти инструменты для регулярного сканирования системы, например, каждую ночь и отправлять отчеты на ваш электронный адрес. Lynis – Security Auditing and Rootkit Scanner Lynis - это бесплатный, мощный и популярный инструмент с открытым исходным кодом для аудита и сканирования безопасности для операционных систем Unix или Linux. Это средство сканирования на наличие вредоносных программ и обнаружения уязвимостей, которое сканирует системы на наличие информации и проблем безопасности, целостности файлов, ошибок конфигурации; выполняет аудит брандмауэра, проверяет установленное программное обеспечение, права доступа к файлам и каталогам, а также многое другое. Важно отметить, что он не выполняет автоматическое усиление защиты системы, однако просто дает предложения, позволяющие повысить уровень защиты вашего сервера. Мы установим Lynis (версия 2.6.6) из исходных кодов, используя следующие команды. # cd /opt/ # wget https://downloads.cisofy.com/lynis/lynis-2.6.6.tar.gz # tar xvzf lynis-2.6.6.tar.gz # mv lynis /usr/local/ # ln -s /usr/local/lynis/lynis /usr/local/bin/lynis Теперь вы можете выполнить сканирование вашей системы с помощью команды ниже: # lynis audit system Initializing program - Detecting OS... [DONE] - Checking profiles... [DONE] Program version: 2.6.6 Operating system: Linux Operating system name: CentOS Operating system version: CentOS Linux release 7.4.1708 (Core) Kernel version: 4.17.6 Hardware platform: x86_64 Hostname: merionet Profiles: /usr/local/lynis/default.prf Log file: /var/log/lynis.log Report file: /var/log/lynis-report.dat Report version: 1.0 Plugin directory: /usr/local/lynis/plugins Auditor: [Not Specified] Language: en Test category: all Test group: all - Program update status... [NO UPDATE] Чтобы запускать Lynis автоматически каждую ночь, добавьте следующую запись cron, которая будет запускаться в 3 часа ночи и отправлять отчеты на ваш адрес электронной почты. 0 3 * * * /usr/local/bin/lynis --quick 2>&1 | mail -s "Lynis Reports of My Server" you@yourdomain.com Chkrootkit – A Linux Rootkit Scanners Chkrootkit - это еще один бесплатный детектор руткитов с открытым исходным кодом, который локально проверяет наличие признаков руткита в Unix-подобных системах. Он помогает обнаружить скрытые дыры в безопасности. Пакет chkrootkit состоит из сценария оболочки, который проверяет системные двоичные файлы на наличие изменений руткита, и ряда программ, которые проверяют различные проблемы безопасности. Средство chkrootkit можно установить с помощью следующей команды в системах на основе Debian: $ sudo apt install chkrootkit В системах на базе CentOS вам необходимо установить его из источников, используя следующие команды: # yum update # yum install wget gcc-c++ glibc-static # wget -c ftp://ftp.pangeia.com.br/pub/seg/pac/chkrootkit.tar.gz # tar –xzf chkrootkit.tar.gz # mkdir /usr/local/chkrootkit # mv chkrootkit-0.52/* /usr/local/chkrootkit # cd /usr/local/chkrootkit # make sense Чтобы проверить ваш сервер с помощью Chkrootkit, выполните следующую команду: $ sudo chkrootkit Или # /usr/local/chkrootkit/chkrootkit После запуска начнется проверка вашей системы на наличие известных вредоносных программ и руткитов, а после завершения процесса вы сможете увидеть отчет. Чтобы запускать Chkrootkit автоматически каждую ночь, добавьте следующую запись cron, которая будет запускаться в 3 часа ночи, и отправляйте отчеты на ваш адрес электронной почты. 0 3 * * * /usr/sbin/chkrootkit 2>&1 | mail -s "chkrootkit Reports of My Server" you@yourdomain.com Rkhunter – A Linux Rootkit Scanners RKH (RootKit Hunter) - это бесплатный, мощный, простой в использовании и хорошо известный инструмент с открытым исходным кодом для сканирования бэкдоров, руткитов и локальных эксплойтов в POSIX-совместимых системах, таких как Linux. Как следует из названия, это средство для обнаружения руткитов, мониторинга и анализа безопасности, которое тщательно проверяет систему на наличие скрытых дыр в безопасности. Инструмент rkhunter можно установить с помощью следующей команды в системах на основе Ubuntu и CentOS $ sudo apt install rkhunter # yum install epel-release # yum install rkhunter Чтобы проверить ваш сервер с помощью rkhunter, выполните следующую команду. # rkhunter -c Чтобы запускать rkhunter автоматически каждую ночь, добавьте следующую запись cron, которая будет работать в 3 часа ночи и отправлять отчеты на ваш адрес электронной почты. 0 3 * * * /usr/sbin/rkhunter -c 2>&1 | mail -s "rkhunter Reports of My Server" you@yourdomain.com ClamAV – Antivirus Software Toolkit ClamAV - это универсальный, популярный и кроссплатформенный антивирусный движок с открытым исходным кодом для обнаружения вирусов, вредоносных программ, троянов и других вредоносных программ на компьютере. Это одна из лучших бесплатных антивирусных программ для Linux и стандарт с открытым исходным кодом для сканирования почтового шлюза, который поддерживает практически все форматы почтовых файлов. Он поддерживает обновления вирусных баз во всех системах и проверку при доступе только в Linux. Кроме того, он может сканировать архивы и сжатые файлы и поддерживает такие форматы, как Zip, Tar, 7Zip, Rar и многие другие. ClamAV можно установить с помощью следующей команды в системах на основе Debian: $ sudo apt-get install clamav ClamAV можно установить с помощью следующей команды в системах на базе CentOS: # yum -y update # yum -y install clamav После установки вы можете обновить сигнатуры и отсканировать каталог с помощью следующих команд. # freshclam # clamscan -r -i DIRECTORY Где DIRECTORY - это место для сканирования. Опция -r означает рекурсивное сканирование, а -i - показать только зараженные файлы. LMD – Linux Malware Detect LMD (Linux Malware Detect) - это мощный и полнофункциональный сканер вредоносных программ для Linux с открытым исходным кодом, специально разработанный и предназначенный для общедоступных сред, но его можно использовать для обнаружения угроз в любой системе Linux. Он может быть интегрирован с модулем сканера ClamAV для повышения производительности. Он предоставляет полную систему отчетов для просмотра текущих и предыдущих результатов сканирования, поддерживает оповещения по электронной почте после каждого выполнения сканирования и многие другие полезные функции. LMD недоступен в онлайн-хранилищах, но распространяется в виде тарбола с веб-сайта проекта. Тарбол, содержащий исходный код последней версии, всегда доступен по следующей ссылке, где его можно скачать с помощью: # wget http://www.rfxn.com/downloads/maldetect-current.tar.gz Затем нам нужно распаковать архив и войти в каталог, в который было извлечено его содержимое. Там мы найдем установочный скрипт install.sh # tar -xvf maldetect-current.tar.gz # ls -l | grep maldetect Далее запускаем скрипт # ./install.sh На этом пока все! В этой статье мы поделились списком из 5 инструментов для сканирования сервера Linux на наличие вредоносных программ и руткитов.
img
На днях к нам в офис пришел четырехпортовый FXO шлюз китайской компании Dinstar DAG100-4O. За относительно небольшие деньги, этот шлюз способен обработать до 4-х аналоговых линий. Помимо этого, имеет 4 Ethernet интерфейса – 3 по LAN и 1 под WAN подключение. Помимо обычного функционала стыка аналоговой телефонной сети и VoIP, этот аппарат умеет работать в режиме маршрутизатора в сети. Перейдем к распаковке: Обзор шлюза Коробка обычная, не фирменная - без символики компании. Внутри коробки находится сам аппарат, блок питания, mini CD диск, обжатый с двух сторон патчкорд Ethernet и телефонный провод с коннектором RJ -11. Были приятно удивлены наличием соединительных шнуров, так как уже подготовились обжимать провода. Вынимаем все оборудование из коробки. На фронтовой панели DAG1000-4O находятся элементы индикации, а именно: PWR – индикация наличия питания RUN – работа шлюза WAN – статус подключения по WAN интерфейсу LAN – статус портов для подключения к LAN FXO (0-4) – состояние FXO портов шлюза Важно отметить, что индикация на FXO интерфейсах маршрутизатора является не постоянной. Порты индицируют только при входящем/исходящем вызовах. Не стоит забывать, что это все-таки аналог. Хочется отметить, что устройство немного «люфтит». Это означает, что при переносе был слышен дребезг металлического корпуса устройства. На задней панели шлюза Dinstar располагаются порты для подключение FXO, LAN, WAN и питание. На нижней части шлюза находится инструкция по настройке шлюза. Вот что необходимо сделать для подключения к графическому интерфейсу шлюза: Подключить DAG1000-4O к сети через интерфейс LAN0. Подключить телефонные линии в FXO интерфейсы. На компьютере, подключенном в тот же сетевой сегмент сети что и шлюз, ввести IP адрес 192.168.11.199, маску подсети 255.255.255.0 и шлюз по умолчанию 192.168.11.1. Применить изменения, открыть в интернет браузере адрес 192.168.11.1 и ввести логин и пароль admin/admin. Конфигурация DAG1000-4O Перейдем к непосредственной настройке шлюза. Первым делом, подключившись к WEB – интерфейсу необходимо поменять IP – адрес шлюза (мы ведь не можем каждый раз менять IP – адрес NIC своего ПК чтобы администрировать шлюз). Делается это во вкладке Network -> Local Network. Выставляем настройки и нажимаем на Save. Важно отметить, что шлюз может работать как в режиме маршрутизатора, так и в режиме моста. Ниже представлен интерфейс для настройки в режиме моста. При настройке в режиме маршрутизатора (Route), в конфигурации прибавляется возможность настройки WAN порта шлюза. Перейдем к настройке SIP сервера в соответствующую вкладку SIP Server и настроим коннект между шлюзом и Asterisk. Здесь необходимо указать IP – адрес, порт и интервал регистрации. Переходим к настройка Asterisk. В нашем случае, мы пользуемся графической оболочкой FreePBX. Заходим во вкладке Connectivity -> Trunks и создаем новый транк с такими параметрами: Производим настройку транка, в соответствие с вышеуказанными параметрами. В данном случае, 192.168.1.110 – это адрес шлюза. Жмем Submit, а затем Apply Config. Возвращаемся на шлюз и идем во вкладку Advanced -> FXS/FXO. Указываем страну, в которой находимся. Мы указали Russia. В сегменте FXO Parameter указываем Detect CID, отмечая галочку на соответствующем поле, и выбираем Send Original CID when Call from PSTN, чтобы получить номер звонящего из публичной сети. Жмем сохранить. Переходим во вкладку Port. Нажимаем на Add и настраиваем FXO порт №0. Вводим данные, как мы создали на Asterisk в настройках транка. Offhook Auto-Dial это в нашем случае номер, на который шлюз пробрасывает пришедший вызов. На стороне Asterisk настроен входящий маршрут на этот DID, 2253535, который уже и проводим манипуляции с вызовом. Жмем Save. Идем во вкладке Call & Routing и выбираем Tel->IP/Tel Routing. В данной статье мы покажем как настраивать входящую из PSTN маршрутизацию вызовов. Отметим, что исходящая маршрутизация настраивается аналогично. В указанной вкладке меню жмем Add. Здесь настроено следующее правило: Все звонки с FXO порта №0 (Call From) с любым префиксом отправлять на SIP сервер (Calls to). Вот и все, теперь наш шлюз будет отправлять все вызовы с порта 0 на Asterisk. Заходим во вкладку Status & Statistics -> Registration и видим, что наш порт зарегистрирован на Asterisk. Теперь можно принимать вызовы с настроенной аналоговой линии через шлюз.
img
Почитать лекцию №16 про модель сети Министерства обороны США (DoD) можно тут. В 1960-х годах, вплоть до 1980-х годов, основной формой связи была коммутируемая схема; отправитель просил сетевой элемент (коммутатор) подключить его к определенному приемнику, коммутатор завершал соединение (если приемник не был занят), и трафик передавался по результирующей схеме. Если это звучит как традиционная телефонная система, то это потому, что на самом деле она основана на традиционной сетевой системе (теперь называемой обычной старой телефонной службой [POTS]). Крупные телефонные и компьютерные компании были глубоко инвестированы в эту модель и получали большой доход от систем, разработанных вокруг методов коммутации цепей. По мере того, как модель DoD (и ее набор сопутствующих протоколов и концепций) начали завоевывать популярность у исследователей, эти сотрудники решили создать новую организацию по стандартизации, которая, в свою очередь, построит альтернативную систему, обеспечивающую "лучшее из обоих миров". Они будут включать в себя лучшие элементы коммутации пакетов, сохраняя при этом лучшие элементы коммутации каналов, создавая новый стандарт, который удовлетворит всех. В 1977 году эта новая организация по стандартизации была предложена и принята в качестве International Organization for Standardizatio (ISO). Основная цель состояла в том, чтобы обеспечить взаимодействие между крупными системами баз данных, доминировавшими в конце 1970-х гг. Комитет был разделен между инженерами связи и контингентом баз данных, что усложнило стандарты. Разработанные протоколы должны были обеспечить как ориентированное на соединение, так и бесконтактное управление сеансами, а также изобрести весь набор приложений для создания электронной почты, передачи файлов и многих других приложений (помните, что приложения являются частью стека). Например, необходимо было кодифицировать различные виды транспорта для транспортировки широкого спектра услуг. В 1989 году-целых десять лет спустя-спецификации еще не были полностью выполнены. Протокол не получил широкого распространения, хотя многие правительства, крупные производители компьютеров и телекоммуникационные компании поддерживали его через стек и модель протокола DoD. Но в течение десяти лет стек DoD продолжал развиваться; была сформирована Инженерная рабочая группа по разработке Интернету (Engineering Task Force -IETF) для поддержки стека протоколов TCP/IP, главным образом для исследователей и университетов (Интернет, как тогда было известно, не допускал коммерческого трафика и не будет до 1992 года). С отказом протоколов OSI материализоваться многие коммерческие сети и сетевое оборудование обратились к пакету протоколов TCP/IP для решения реальных проблем "прямо сейчас". Кроме того, поскольку разработка стека протоколов TCP/IP оплачивалась по грантам правительства США, спецификации были бесплатными. На самом деле существовали реализации TCP/IP, написанные для широкого спектра систем, доступных благодаря работе университетов и аспирантов, которые нуждались в реализации для своих исследовательских усилий. Однако спецификации OSI могли быть приобретены только в бумажном виде у самой ISO и только членами ISO. ISO был разработан, чтобы быть клубом "только для членов", предназначенным для того, чтобы держать должностных лиц под контролем развития технологии коммутации пакетов. Однако принцип "только члены" организации работал против должностных лиц, что в конечном счете сыграло свою роль в их упадке. Однако модель OSI внесла большой вклад в развитие сетей; например, пристальное внимание, уделяемое качеству обслуживания (QoS) и вопросам маршрутизации, принесло дивиденды в последующие годы. Одним из важных вкладов стала концепция четкой модульности; сложность соединения многих различных систем с множеством различных требований побудила сообщество OSI призвать к четким линиям ответственности и четко определенным интерфейсам между слоями. Второй - это концепция межмашинного взаимодействия. Средние блоки, называемые затем шлюзами, теперь называемые маршрутизаторами и коммутаторами, явно рассматривались как часть сетевой модели, как показано на рисунке 3. Гениальность моделирования сети таким образом заключается в том, что она делает взаимодействие между различными частями намного легче для понимания. Каждая пара слоев, перемещаясь вертикально по модели, взаимодействует через сокет или приложение. Programming Interface (API). Таким образом, чтобы подключиться к определенному физическому порту, часть кода на канальном уровне будет подключаться к сокету для этого порта. Это позволяет абстрагировать и стандартизировать взаимодействие между различными уровнями. Компонент программного обеспечения на сетевом уровне не должен знать, как обращаться с различными видами физических интерфейсов, только как получить данные для программного обеспечения канального уровня в той же системе. Каждый уровень имеет определенный набор функций для выполнения. Физический уровень, также называемый уровнем 1, отвечает за модулирование или сериализацию 0 и 1 на физическом канале. Каждый тип связи будет иметь различный формат для передачи сигналов 0 или 1; физический уровень отвечает за преобразование "0" и "1" в эти физические сигналы. Канальный уровень, также называемый уровнем 2, отвечает за то, чтобы некоторая передаваемая информация фактически отправлялась на нужный компьютер, подключенный к той же линии. Каждое устройство имеет свой адрес канала передачи данных (уровень 2), который можно использовать для отправки трафика на конкретное устройство. Уровень канала передачи данных предполагает, что каждый кадр в потоке информации отделен от всех других кадров в том же потоке, и обеспечивает связь только для устройств, подключенных через один физический канал. Сетевой уровень, также называемый уровнем 3, отвечает за передачу данных между системами, не связанными через единую физическую линию связи. Сетевой уровень, таким образом, предоставляет сетевые адреса (или Уровень 3), а не локальные адреса линий связи, а также предоставляет некоторые средства для обнаружения набора устройств и линий связи, которые должны быть пересечены, чтобы достичь этих пунктов назначения. Транспортный уровень, также называемый уровнем 4, отвечает за прозрачную передачу данных между различными устройствами. Протоколы транспортного уровня могут быть либо "надежными", что означает, что транспортный уровень будет повторно передавать данные, потерянные на каком-либо нижнем уровне, либо "ненадежными", что означает, что данные, потерянные на нижних уровнях, должны быть повторно переданы некоторым приложением более высокого уровня. Сеансовый уровень, также называемый уровнем 5, на самом деле не переносит данные, а скорее управляет соединениями между приложениями, работающими на двух разных компьютерах. Сеансовый уровень гарантирует, что тип данных, форма данных и надежность потока данных все представлены и учтены. Уровень представления, также называемый уровнем 6, фактически форматирует данные таким образом, чтобы приложение, работающее на двух устройствах, могло понимать и обрабатывать данные. Здесь происходит шифрование, управление потоком и любые другие манипуляции с данными, необходимые для обеспечения интерфейса между приложением и сетью. Приложения взаимодействуют с уровнем представления через сокеты. Уровень приложений, также называемый уровнем 7, обеспечивает интерфейс между пользователем и приложением, которое, в свою очередь, взаимодействует с сетью через уровень представления. Не только взаимодействие между слоями может быть точно описано в рамках семислойной модели, но и взаимодействие между параллельными слоями на нескольких компьютерах может быть точно описано. Можно сказать, что физический уровень на первом устройстве взаимодействует с физическим уровнем на втором устройстве, уровень канала передачи данных на первом устройстве с уровнем канала передачи данных на втором устройстве и так далее. Точно так же, как взаимодействие между двумя слоями на устройстве обрабатывается через сокеты, взаимодействие между параллельными слоями на разных устройствах обрабатывается через сетевые протоколы. Ethernet описывает передачу сигналов "0" и "1" на физический провод, формат для запуска и остановки кадра данных и средство адресации одного устройства среди всех устройств, подключенных к одному проводу. Таким образом, Ethernet попадает как в физический, так и в канальный уровни передачи данных (1 и 2) в модели OSI. IP описывает форматирование данных в пакеты, а также адресацию и другие средства, необходимые для отправки пакетов по нескольким каналам канального уровня, чтобы достичь устройства за несколько прыжков. Таким образом, IP попадает в сетевой уровень (3) модели OSI. TCP описывает настройку и обслуживание сеанса, повторную передачу данных и взаимодействие с приложениями. TCP затем попадает в транспортный и сеансовый уровни (4 и 5) модели OSI. Одним из наиболее запутанных моментов для администраторов, которые когда-либо сталкиваются только со стеком протоколов TCP/IP, является другой способ взаимодействия протоколов, разработанных в/для стека OSI, с устройствами. В TCP/IP адреса относятся к интерфейсам (а в мире сетей с большой степенью виртуализации несколько адресов могут относиться к одному интерфейсу, или к услуге anycast, или к multicast и т. д.). Однако в модели OSI каждое устройство имеет один адрес. Это означает, что протоколы в модели OSI часто называются типами устройств, для которых они предназначены. Например, протокол, несущий информацию о достижимости и топологии (или маршрутизации) через сеть, называется протоколом промежуточной системы (IS-IS), поскольку он работает между промежуточными системами. Существует также протокол, разработанный для того, чтобы промежуточные системы могли обнаруживать конечные системы; это называется протоколом End System to Intermediate System (ES-IS).
ВЕСЕННИЕ СКИДКИ
40%
50%
60%
До конца акции: 30 дней 24 : 59 : 59