По вашему запросу ничего не найдено :(
Убедитесь, что запрос написан правильно, или посмотрите другие наши статьи:
img
Apache Maven - это инструмент управления проектами и автоматизации сборки с открытым исходным кодом, основанный на концепции объектной модели проекта (POM – Project Object Model), которая в основном используется для развертывания приложений на основе Java, но также может использоваться в проектах, написанных на C#, Ruby и другиех языках программирования. В этой статье мы объясним, как установить и настроить последнюю версию Apache Maven в системе CentOS 7 (данная инструкция также работает с дистрибутивом RHEL и Fedora). Требования: Недавно развернутый или существующий экземпляр сервера CentOS 7. Java Development Kit (JDK) - Maven 3.3+ требует JDK 1.7 или выше для выполнения. Установка OpenJDK 8 в CentOS 7 Java Development Kit (JDK) является основным требованием для установки Apache Maven, поэтому сначала установите Java в системе CentOS 7 из репозитория по умолчанию и проверьте версию с помощью следующих команд. # yum install -y java-1.8.0-openjdk-devel # java -version Если установка прошла успешно то, вы увидите следующий вывод. openjdk version "1.8.0_141" OpenJDK Runtime Environment (build 1.8.0_141-b16) OpenJDK 64-Bit Server VM (build 25.141-b16, mixed mode) Установка Apache Maven в CentOS 7 Далее перейдите на официальную страницу загрузки Apache Maven и загрузите последнюю версию или используйте следующую команду wget, чтобы загрузить ее в домашний каталог maven ‘/usr/local/src’. # cd /usr/local/src # wget http://www-us.apache.org/dist/maven/maven-3/3.5.4/binaries/apache-maven-3.5.4-bin.tar.gz Настройка среды Apache Maven Теперь нам нужно сконфигурировать переменные окружения для предварительно скомпилированных файлов Apache Maven в нашей системе, создав файл конфигурации «maven.sh» в каталоге «/etc/profile.d» . # cd /etc/profile.d/ # vim maven.sh Добавьте следующую конфигурацию в файл конфигурации «maven.sh». # Apache Maven Environment Variables # MAVEN_HOME for Maven 1 - M2_HOME for Maven 2 export M2_HOME=/usr/local/src/apache-maven export PATH=${M2_HOME}/bin:${PATH} Теперь сделайте конфигурационный файл «maven.sh» исполняемым, а затем загрузите конфигурацию, выполнив команду «source» . # chmod +x maven.sh # source /etc/profile.d/maven.sh Проверка версии Apache Maven Чтобы проверить установку Apache Maven, выполните следующую команду. # mvn --version И вы должны получить вывод, похожий на следующий: Apache Maven 3.5.4 (1edded0938998edf8bf061f1ceb3cfdeccf443fe; 2018-06-17T19:33:14+01:00) Maven home: /usr/local/src/apache-maven Java version: 9.0.4, vendor: Oracle Corporation, runtime: /opt/java/jdk-9.0.4 Default locale: en_US, platform encoding: UTF-8 OS name: "linux", version: "4.17.6-1.el7.elrepo.x86_64", arch: "amd64", family: "unix" Вот и все! Вы успешно установили Apache Maven 3.5.4 в вашей системе CentOS 7.
img
Это клише, но это правда - перезапуск сервера Linux решает множество проблем. Когда система перезагружается, все неисправное программное обеспечение удаляется из активной памяти. Когда система перезагружается, она загружает новую чистую копию программного обеспечения в активную память. Кроме того, некоторые операционные системы требуют перезагрузки для обработки обновлений или изменений конфигурации. Шаги по перезагрузке Linux с помощью командной строки Перезапуск локальной операционной системы Linux Шаг 1: откройте окно терминала Если в вашей версии Linux используется графический интерфейс, вы можете открыть окно терминала, щелкнув правой кнопкой мыши на рабочем столе и выбрав пункт Open in terminal (Открыть в терминале). Вы также можете щелкнуть главное меню (обычно находится в нижнем левом или верхнем левом углу) и ввести terminal в строке поиска. Щелкните значок терминала, как показано на рисунке ниже. Шаг 2. Используйте команду выключения Поскольку отключение питания - одна из самых основных функций операционной системы, эта команда должна работать для большинства дистрибутивов Linux. В окне терминала введите следующее: sudo shutdown –r Команда sudo указывает Linux запустить команду от имени администратора, поэтому вам может потребоваться ввести свой пароль. Ключ –r в конце указывает, что вы хотите перезапустить машину. Альтернативный вариант: перезагрузить Linux с помощью команды reboot В терминале введите: reboot Многие версии Linux не требуют прав администратора для перезагрузки. Если вы получили сообщение о том, что у вас недостаточно прав, введите: sudo reboot Ваша система должна закрыть все открытые приложения и перезагрузиться. Перезагрузить удаленный сервер Linux Шаг 1. Откройте командную строку Если у вас есть графический интерфейс, откройте терминал щелкнув правой кнопкой мыши на рабочем столе и выбрав пункт Open in terminal (Открыть в терминале), либо можете щелкнуть главное меню (обычно находится в нижнем левом или верхнем левом углу) и ввести terminal в строке поиска. Если вы предпочитаете использовать сочетание клавиш, нажмите Ctrl + Alt + T./p> Шаг 2: используйте команду перезагрузки проблемы подключения SSH
img
В программно-конфигурируемой сети (SDN) происходит разделение плоскости передачи и управления данными, позволяющее осуществить программное управление плоскостью передачи, которое может быть физически или логически отделено от аппаратных коммутаторов и маршрутизаторов. Подобный подход дает большое количество плюсов: Возможность видеть топологию всей сети; Возможность конфигурации всей сети в целом, а не отдельных единиц оборудования; Возможность производить независимое обновление оборудования в сети; Возможность контролировать всей сети из высокоуровневого приложения. SDN сети То есть, основное отличие программно-конфигурируемых сетей - делегация задачи вычисления маршрутов контроллеру (плоскость управления) и оставить функцию передачи пакетов (плоскость передачи данных) на отдельных устройствах (коммутаторы OpenFlow) , что снизит нагрузку на маршрутизатор и увеличит его производительность. Для оценки функциональности SDN-сети с элементами NFV можно использовать два основных подхода, со своими достоинствами и недостатками: Метод Достоинства Недостатки Эмуляция Высокая точность, возможность использования настоящего ПО Возможная несовместимость конфигурации с реальным оборудованием Построение сети на реальном оборудовании Высокая точность результатов Высокая стоимость С началом развития в сфере SDN-сетей появилось два эмулятора SDN-сетей, которые в добавок поддерживают симуляцию (возможность тестирования сети, часть оборудования в которой реальна и часть - эмулирована). Рассмотрим эмуляторы подробнее. Mininet Эмулятор, находящийся в свободном доступе, большая часть которого написана на языке Python. Работает с “легковесной” виртуализацией, то есть вся эмулируемая сеть реальна, в том числе и конечные виртуальные машины. Есть возможность подключения любых виртуальных коммутаторов и контроллеров. Достоинства Недостатки Открытый код, бесплатность, быстродействие, поддержка всех контроллеров SDN и протоколов OpenFlow вплоть до 1.3, большое количество обучающих видео Высокая сложность, необходимо знание Python и Linux, отсутствие полноценного графического интерфейса Estinet Эмулятор, все права на который имеет компания Estinet, но для студентов и всех желающих попробовать есть свободный доступ на месяц. Есть удобный графический интерфейс для построения топологии сети, редакции свойств оборудования и запуска эмуляции. Достоинства Недостатки Наглядность, простота настройки и установки, возможность эмуляции LTE и Wi-Fi сетей Закрытость, малое количество обучающих статей и видео, низкая производительность работы, более высокая сложность настройки при использовании не встроенного контроллера Ниже приведена часть программного кода на языке Python для построения сети в эмуляторе Mininet: # Инициализация топологии Topo.__init__( self, **opts ) # Добавление узлов, первые - коммутаторы S1 = self.addSwitch( 's0' ) S2 = self.addSwitch( 's1' ) S3 = self.addSwitch( 's2' ) S4 = self.addSwitch( 's3' ) S5 = self.addSwitch( 's4' ) S6 = self.addSwitch( 's5' ) S7 = self.addSwitch( 's6' ) S8 = self.addSwitch( 's7' ) S9 = self.addSwitch( 's8' ) S10= self.addSwitch( 's9' ) S11= self.addSwitch( 's10') # Далее - рабочие станции(виртуальные машины) H1= self.addHost( 'h0' ) H2 = self.addHost( 'h1' ) H3 = self.addHost( 'h2' ) H4 = self.addHost( 'h3' ) H6 = self.addHost( 'h5' ) H7 = self.addHost( 'h6' ) H8 = self.addHost( 'h7' ) H9 = self.addHost( 'h8' ) H10 = self.addHost( 'h9' ) H11 = self.addHost( 'h10' ) # Добавление каналов связи между коммутатором и рабочей станцией self.addLink( S1 , H1 ) self.addLink( S2 , H2 ) self.addLink( S3 , H3 ) self.addLink( S4 , H4 ) self.addLink( S7 , H7 ) self.addLink( S8 , H8) self.addLink( S9 , H9) self.addLink( S10 , H10) self.addLink( S11 , H11) # Добавление каналов связи между коммутаторами self.addLink( S1 , S2, bw=1, delay='0.806374975652ms') self.addLink( S1 , S3, bw=1, delay='0.605826192092ms') self.addLink( S2 , S11, bw=1000, delay='1.362717203ms') self.addLink( S3 , S10, bw=1000, delay='0.557936322ms') self.addLink( S4 , S5, bw=1000, delay='1.288738ms') self.addLink( S4 , S7, bw=1000, delay='1.1116865ms') self.addLink( S5 , S6, bw=1000, delay='0.590828707ms') self.addLink( S5 , S7, bw=1000, delay='0.9982281ms') self.addLink( S6 , S10, bw=1000, delay='1.203263ms') self.addLink( S7 , S8, bw=1000, delay='0.2233403ms') self.addLink( S8 , S9, bw=1000, delay='1.71322726ms') self.addLink( S8 , S11, bw=1000, delay='0.2409477ms') self.addLink( S9 , S10, bw=1000, delay='1.343440256ms') self.addLink( S10 , S11, bw=1000, delay='0.544934977ms') Сравнение контроллеров для построения сети В данный момент, существует большое количество платных и бесплатных(открытых) контроллеров. Все нижеперечисленные можно скачать и установить на домашнюю систему или виртуальную машину. Рассмотрим самые популярные открытые контроллеры и их плюсы и минусы: NOX - один из первых контроллеров, написан на языке C++; POX - контроллер, похожий на NOX и написанный на языке Python; OpenDayLight- контроллер, поддерживаемый многими корпорациями, написан на языке Java и постоянно развивающийся; RunOS- российская разработка от Центра Прикладного Исследования Компьютерных Сетей (ЦПИКС), имеет графический интерфейс, подробную документацию и заявлена самая высокая производительность. В таблице ниже рассмотрим плюсы и минусы каждого из контроллеров: Название контроллера Достоинства Недостатки NOX Скорость работы Низкое количество документации, необходимость знания C++ POX Проще обучиться, много документации Низкая скорость работы, необходимость знания Python, сложная реализация совместимости с NFV OpenDayLight Наличие графического интерфейса, поддержка VTN-сетей(NFV), наличие коммерческих продуктов на базе данного контроллера(Cisco XNC) Сложность в использовании, сложная установка RunOS Высокая производительность, Российская разработка, Открытый код, Наличие графического интерфейса Ранняя версия, возможные проблемы в эксплуатации по причине сырости продукта.
ВЕСЕННИЕ СКИДКИ
40%
50%
60%
До конца акции: 30 дней 24 : 59 : 59