По вашему запросу ничего не найдено :(
Убедитесь, что запрос написан правильно, или посмотрите другие наши статьи:
img
Офисная IP – телефония является неотъемлемой частью современной структуры успешного бизнеса, которая работает параллельно с сотрудниками компании на общее благо. Даже когда заканчивается рабочий день, система продолжает свою работу, имея четки временные указания, как обрабатывать поступивший вызов в тот или иной момент времени. О том, как настроить временные группы и временные условия в IP – АТС Elastix 4 расскажем в статье Терминология Перед тем, как приступить к настройке, разберемся к это работает. В Elastix существуют временные условия (time conditions) и временные группы (time groups). Первые служат для выбора маршрута, если вызов попал в определенные временные рамки, а вторые, для определения этих временных рамок. Итак: Time Condition - условия. Работают так: если время входящего вызова попало под условия, сформулированные в параметре Time Group, то вызов нужно отправить в направлении А, а если нет, то в направлении Б; Time Groups - тайм – слоты. Например, с понедельника по пятницу, с 10 – 19, или в субботу с 14 – 15 и так далее; Настройка Time Groups Пусть задача у нас такова: наша организация работает с понедельника по пятницу, с 10 – 19 часов. Первым делом настроим Time Groups (временные группы). Для этого, переходим в раздел PBX → PBX Configuration → Time Groups: Для сегментации вызовов, поступающих по будням, с 10 до 19 часов, производим следующие настройки: Time to start: - 10:00 Time to finish: - 19:00 Week Day start: - Monday Week Day finish: - Friday Готово. Переходим к настройке временных условий. Настройка Time Conditions Продолжаем. Теперь настроим временные условия. Для этого, перейдите в раздел PBX → PBX Configuration → Time Conditions : Выполняем следующие настройки: Time Condition name - имя для временного условия. Например, work Time Group - временная группа, которую мы создали ранее. Destination if time matches - куда направлять вызов, если временное условие совпало (диапазон с понедельника по пятницу, с 10 – 19). В нашем примере, вызов отправится на голосовое приветствие, которое предназначено для звонящих в будние дни. Destination if time does not match - куда направлять вызов, если временное условие не совпало. Мы отправляем на голосовое приветствие Holiday. Готово. Нажимает Submit, а затем Apply Config. Применение настроек в продуктивной среде Чтобы наши настройки применялись ко всем входящим вызовам, повесим их в качестве назначения на входящем маршруте в поле Set Destination. Готово!
img
Virtual Network Computing (VNC) - это графическая система общего доступа к рабочему столу, которая позволяет использовать клавиатуру и мышь для удаленного управления другим компьютером. В этой статье описываются шаги по установке и настройке VNC-сервера в CentOS 8. Мы также покажем, как безопасно подключаться к VNC-серверу через туннель SSH. Подготовка Чтобы следовать этому руководству, вам необходимо войти в систему как пользователь с привилегиями sudo на удаленном компьютере CentOS. Установка окружения рабочего стола Как правило, на серверах не установлена среда рабочего стола. Если машина, к которой вы хотите подключиться, не имеет графического интерфейса, сначала установите ее. В противном случае пропустите этот шаг. Выполните следующую команду, чтобы установить Gnome, среду рабочего стола по умолчанию в CentOS 8 на удаленной машине: sudo dnf groupinstall "Server with GUI" В зависимости от вашей системы загрузка и установка пакетов и зависимостей Gnome может занять некоторое время. Установка VNC-сервера В качестве сервера мы будем использовать TigerVNC - активно поддерживаемый высокопроизводительный VNC-сервер с открытым исходным кодом. Он доступен в репозиториях CentOS по умолчанию, для его установки введите: sudo dnf install tigervnc-server После установки VNC-сервера выполните команду vncserver, чтобы создать начальную конфигурацию и установить пароль. Не используйте sudo при выполнении следующей команды: vncserver Вам будет предложено ввести и подтвердить пароль и указать, следует ли устанавливать его в качестве пароля только для просмотра (view-only). Если вы решите установить пароль только для просмотра, пользователь не сможет взаимодействовать с экземпляром VNC с помощью мыши и клавиатуры. You will require a password to access your desktops. Password: Verify: Would you like to enter a view-only password (y/n)? n /usr/bin/xauth: file /home/linuxize/.Xauthority does not exist New 'server2.linuxize.com:1 (linuxize)' desktop at :1 on machine server2.linuxize.com Starting applications specified in /etc/X11/Xvnc-session Log file is /home/linuxize/.vnc/server2.linuxize.com:1.log При первом запуске команды vncserver она создаст и сохранит файл паролей в каталоге ~/.vnc, который будет создан, если его не будет. Обратите внимание, что : 1 после имени хоста в выводе выше. Это указывает номер порта дисплея, на котором работает сервер VNC. В нашем случае сервер работает по TCP-порту 5901 (5900 + 1) . Если вы создадите второй экземпляр, он будет работать на следующем свободном порту, то есть : 2, что означает, что сервер работает на порту 5902 (5900 + 2) . Важно помнить, что при работе с серверами VNC: X - это порт дисплея, который относится к 5900 + X. Прежде чем перейти к следующему шагу, сначала остановите экземпляр VNC, используя команду vncserver с параметром -kill и номером сервера в качестве аргумента. В нашем случае сервер работает в порту 5901 (: 1), поэтому, чтобы остановить его, запустите: vncserver -kill :1 Мы получим такой вывод: Killing Xvnc process ID 19681 Настройка VNC-сервера Теперь, когда и Gnome, и TigerVNC установлены на удаленной машине CentOS, следующим шагом является настройка TigerVNC для использования Gnome. Сервер VNC использует файл ~/.vnc/xstartup для запуска приложений при создании нового рабочего стола. Откройте файл: vim ~/.vnc/xstartup И отредактируйте его следующим образом: #!/bin/sh [ -x /etc/vnc/xstartup ] && exec /etc/vnc/xstartup [ -r $HOME/.Xresources ] && xrdb $HOME/.Xresources vncconfig -iconic & dbus-launch --exit-with-session gnome-session & Сохраните и закройте файл (напоминаем, что в vim для этого нужно ввести :wq). Приведенный выше скрипт автоматически выполняется при каждом запуске или перезапуске сервера TigerVNC. Если вы хотите передать дополнительные параметры серверу VNC, откройте файл ~/.vnc/config и добавьте один параметр в каждой строке. Наиболее распространенные параметры перечислены в файле. Раскомментируйте и измените по своему вкусу. Вот пример: # securitytypes=vncauth,tlsvnc # desktop=sandbox geometry=1920x1080 # localhost # alwaysshared Создание файла модуля Systemd Файлы модулей позволяют легко запускать, останавливать и перезапускать службы. Как правило, лучшим местом для хранения файлов пользовательских модулей является ~/.config/systemd/user. Создайте каталог при помощи команды mkdir: mkdir -p ~/.config/systemd/user Скопируйте дефолтный файл модуля vncserver: cp /usr/lib/systemd/user/vncserver@.service ~/.config/systemd/user/ Сообщите systemd, что существует новый файл пользовательского модуля: systemctl --user daemon-reload Запустите службу VNC и включите ее при загрузке: systemctl --user enable vncserver@:1.service --now Число 1 после @: определяет порт дисплея, который будет прослушивать служба VNC. Мы используем 1, что означает, что VNC-сервер будет прослушивать порт 5901, как мы обсуждали ранее. Включите задержку, чтобы служба пользователя запускалась при загрузке и продолжала работать, когда пользователь не в системе: loginctl enable-linger Убедитесь, что служба успешно запущена: systemctl --user status vncserver@:1.service Получим такой вывод: ? vncserver@:1.service - Remote desktop service (VNC) Loaded: loaded (/home/linuxize/.config/systemd/user/vncserver@.service; enabled; vendor preset: enabled) Active: active (running) since Thu 2020-01-30 22:14:08 UTC; 2s ago Process: 20813 ExecStart=/usr/bin/vncserver :1 (code=exited, status=0/SUCCESS) Process: 20807 ExecStartPre=/bin/sh -c /usr/bin/vncserver -kill :1 > /dev/null 2>&1 || : (code=exited, status=0/SUCCESS) CGroup: /user.slice/user-1000.slice/user@1000.service/vncserver.slice/vncserver@:1.service ... Подключение к серверу VNC VNC не является зашифрованным протоколом и может подвергаться перехвату пакетов. Рекомендуемый подход заключается в создании туннеля SSH для безопасной пересылки трафика с локального компьютера через порт 5901 на удаленный сервер с тем же портом. Настройка SSH-туннелирования в Linux и macOS Если вы используете Linux, macOS или любую другую операционную систему на основе Unix на своем компьютере, вы можете легко создать туннель с помощью следующей команды ssh: ssh -L 5901:127.0.0.1:5901 -N -f -l username remote_server_ip Вам будет предложено ввести пароль пользователя. Замените username и remote_server_ip своим именем пользователя и IP-адресом вашего сервера. Настройка SSH-туннелирования в Windows Пользователи Windows могут настроить SSH-туннелирование с помощью PuTTY. Откройте Putty и введите IP-адрес вашего сервера в поле Host name or IP address. В меню «Connection» разверните пункт «SSH» и выберите «Tunnels» . Введите порт VNC-сервера 5901 в поле Source Port, введите адрес_сервера: 5901 в поле Destination и нажмите кнопку Add. Вернитесь на страницу ”Session”, чтобы сохранить настройки, чтобы вам не приходилось каждый раз вводить их. Чтобы войти на удаленный сервер, выберите сохраненный сеанс и нажмите кнопку «Open» . Подключение с помощью Vncviewer Чтобы подключиться к удаленному Серверу, откройте программу просмотра VNC и введите localhost: 5901. Вы можете использовать любую программу просмотра VNC, такую как TigerVNC, TightVNC, RealVNC, UltraVNC Vinagre и VNC Viewer для Google Chrome. Мы будем использовать TigerVNC: При появлении запроса введите пароль, и вы увидите рабочий стол Gnome по умолчанию. Это должно выглядеть примерно так: Готово! Теперь вы можете начать работу на удаленном рабочем столе с локального компьютера, используя клавиатуру и мышь. Итоги Мы показали вам, как настроить VNC-сервер и подключиться к удаленной машине CentOS 8. Чтобы запустить отображение для более чем одного пользователя, повторите те же шаги. Создайте исходную конфигурацию, установите пароль с помощью команды vncserver и создайте новый файл службы, используя другой порт.
img
JIT-компиляция – это метод повышения производительности интерпретируемых программ. JIT расшифровывается как Just-in-time. Во время выполнения программа может быть скомпилирована в машинный код для повышения ее производительности. Также этот метод известен как динамическая компиляция. Динамическая компиляция имеет несколько преимуществ перед статической. При запуске приложений на JAVA или C# среда выполнения может профилировать приложение во время его исполнения. Это позволяет создавать более оптимизированный код. Если поведение приложения меняется во время его исполнения, то среда выполнения может перекомпилировать код. Есть некоторые недостатки, заключающиеся в задержках при запуске или непроизводительных издержках при компиляции во время выполнения. Чтобы ограничить эти издержки, многие JIT-компиляторы компилируют только пути кода, которые часто используются. Обзор Традиционно существует два метода преобразования исходного кода в форму, которую можно запустить на платформе. Статистическая компиляция преобразует код в язык для конкретной платформы. Интерпретатор непосредственно выполняет исходный код. JIT-компиляция пытается использовать преимущества обоих. В то время как выполняется интерпретируемая программа, JIT-компилятор определяет участки часто используемого кода и компилирует его в машинный код. В зависимости от компилятора это можно сделать для метода или меньшего участка кода. Впервые динамическая компиляция была описана в статье о языке LISP Дж. Маккарти в 1960 году. Компиляция на лету, JIT или динамическая компиляция – это компиляция, которая выполняется непосредственно во время исполнения программы, а не до этого. Что в этот момент происходит? Перевод в машинный код. Преимущества JIT-компиляции заключаются в том, что поскольку компиляция происходит во время выполнения, то JIT-компилятор имеет доступ к динамической информации времени выполнения, а это в свою очередь позволяет ему оптимизировать процесс (например, встраивать функции). Что важно понимать, когда речь идет о JIT-компиляции? Она скомпилирует байт-код в инструкции машинного кода работающего компьютера. Это означает, что полученный машинный код оптимизирован для архитектуры процессора конкретного компьютера. В качестве примеров JIT-компиляторов можно привести JVM (Java Virtual Machine - виртуальная машина Java) на Java и CLR (Common Language Runtime – общеязыковая исполняющая среда) на C#. История Изначально компилятор отвечал за преобразование языка высокого уровня (выше, чем ассемблер) в объектный код (машинные инструкции), который затем должен был быть связан (линкером) с исполняемой программой. В какой-то момент эволюции языков компиляторы начали компилировать язык высокого уровня в псевдокод, который затем интерпретировался (интерпретатором) для запуска программы. Это исключило объектный код и исполняемые программы и позволило перенести эти языки на несколько операционных систем и аппаратных платформ. Одним из первых был Pascal (который скомпилирован в P-Code); более современными примерами являются Java и C#. Со временем термин P-Code был заменен на байт-код, поскольку большинство псевдоопераций имеют длину в один байт. JIT-компилятор – это функция интерпретатора, которая вместо интерпретации байт-кода при каждом вызове компилирует байт-код в инструкции машинного кода работающей машины, а затем вызывает этот объектный код. В идеальном варианте эффективность выполнения объектного кода должна превзойти неэффективность перекомпиляции программы при каждом ее запуске. Обычный сценарий Исходный код полностью преобразуется в машинный код. JIT-сценарий Исходный код преобразуется в структуру на языке ассемблера, например, IL (промежуточный язык) для C#, ByteCode для Java. Промежуточный код преобразуется в машинный только тогда, когда приложение нуждается в том, чтобы необходимые коды были преобразованы в машинный код. JIT или не JIT При JIT-компиляции не весь код преобразуется в машинный код. Для начала преобразуется только необходимая часть кода. Затем, если вызываемый метод или выполняемые функции находятся не в виде машинного кода, то они тоже будут преобразованы в машинный код. Это снижает нагрузку на ЦП. Поскольку машинный код будет генерироваться во время выполнения, то JIT-компилятор создаст машинный код, оптимизированный для запуска архитектуры ЦП машины. Ниже приведены некоторые примеры JIT-компиляторов: Java: JVM (Java Virtual Machine – виртуальная машина Java) C#: CLR (Common Language Runtime – общеязыковая исполняющая среда) Android: DVM (Dalvik Virtual Machine – виртуальная машина Dalvik) или ART (Android RunTime – среда выполнения Android-приложений) в новых версиях Виртуальная машина Java (JVM) выполняет байт-код и ведет подсчет времени выполнения функции. Если это значение превышает предустановленный порог, то JIT-компилятор компилирует код в машинный код, который в дальнейшем может быть выполнен непосредственно процессором (в отличие от случая, когда javac компилирует код в байт-код, а затем интерпретатор интерпретирует этот байт-код построчно, переводя его в машинный код, и выполняет его). Кроме того, при следующем вычислении функции тот же скомпилированный код выполняется снова, в отличие от обычной интерпретации, когда код повторно интерпретируется построчно. Это значительно ускоряет процесс выполнения программы.
ВЕСЕННИЕ СКИДКИ
40%
50%
60%
До конца акции: 30 дней 24 : 59 : 59