По вашему запросу ничего не найдено :(
Убедитесь, что запрос написан правильно, или посмотрите другие наши статьи:
img
NTFS - это система хранения файлов, стандартная для компьютеров Windows, но системы Linux также используют ее для организации данных. Большинство систем Linux монтируют диски автоматически. Однако в конфигурациях с двойной загрузкой, где требуется обмен файлами между двумя системами с разделами NTFS, эта процедура выполняется вручную. Эта статья покажет вам, как смонтировать раздел NTFS в Linux с разрешениями только для чтения или чтения и записи. Смонтировать раздел NTFS с разрешением только для чтения Выполните следующие действия, чтобы смонтировать раздел NTFS с доступом только для чтения. Примечание. Раздел только для чтения позволяет пользователям читать файлы. Чтобы включить запись в раздел NTFS, обратитесь ко второму разделу статьи. Определить раздел NTFS Перед монтированием раздела NTFS определите его с помощью команды parted: sudo parted -l В приведенном выше примере два раздела NTFS находятся на диске /dev/sdb. Прежде чем продолжить, запишите номер раздела, который вы хотите смонтировать. Вы также можете использовать команды fdisk и grep, чтобы показать на диске только разделы NTFS: sudo fdisk -l | grep NTFS Создать точку монтирования и смонтировать раздел NTFS В этом примере мы смонтируем раздел /dev/sdb1 с разрешением только для чтения. Сначала создайте точку монтирования с помощью команды mkdir: sudo mkdir /mnt/ntfs1 Затем смонтируйте раздел в созданный вами каталог. Используйте команду mount и путь к разделу, который вы указали ранее: sudo mount -t ntfs /dev/sdb1 /mnt/ntfs1 Используйте инструмент для освобождения диска, чтобы проверить подробную информацию обо всех файловых системах и убедиться, что вы успешно смонтировали раздел: df -hT Раздел /dev/sdb1 отображается как смонтированный в нижней части списка. Теперь у вас есть доступ только для чтения к этому разделу NTFS. Смонтировать раздел NTFS с разрешениями на чтение и запись Чтобы смонтировать раздел NTFS с разрешениями на чтение и запись, вам необходимо установить fuse и ntfs-3 в вашей системе. Выполните следующие действия, чтобы завершить процесс монтирования. Примечание. В некоторых дистрибутивах Linux по умолчанию уже установлены fuse и ntfs-3g. Обновить репозитории пакетов Выполните следующую команду, чтобы загрузить и обновить репозитории пакетов: sudo apt update Установите Fuse и ntfs-3g Чтобы установить fuse в вашей системе Linux из репозитория по умолчанию, используйте соответствующий менеджер пакетов. В нашем примере мы используем apt в Ubuntu. sudo apt install fuse Когда установка завершится, установите ntfs-3g, запустив: sudo apt install ntfs-3g В случае, если fuse и ntfs-3g уже установлены, вывод выглядит примерно так, как показано ниже: Смонтировать раздел NTFS После установки пакетов программного обеспечения fuse и ntfs-3g смонтируйте раздел NTFS. Сначала создайте точку монтирования с помощью команды mkdir: sudo mkdir /mnt/ntfs2 Затем используйте команду mount, чтобы смонтировать нужный раздел. Например, /dev/sdb2: sudo mount -t ntfs-3g /dev/sdb2 /mnt/ntfs2/ Чтобы проверить, смонтирован ли раздел, выполните команду df: df -hT Теперь у вас есть права на чтение и запись для подключенного раздела NTFS. Примечание. Для монтирования раздела через ntfs-3g рекомендуется ядро Linux версии 2.6.20 или новее.
img
Всем привет! Сейчас мы расскажем об основных правилах, которые следует соблюдать при удаленном подключении телефона к IP-АТС. Актуально не только для Asterisk, но и для вообще любых IP-АТС. Основные проблемы возникают из-за 3 факторов: Недостаточная пропускная способность сети, конфигурация межсетевых экранов и функционал инспектирования SIP-трафика. Но обо всём по порядку. Пропускная способность (Bandwidth) Давайте посчитаем, какая нам потребуется пропускная способность для одного звонка с использованием кодека G.711. При условии, что мы передаём голос в стандартной Ethernet – сети и будет задействован стек протоколов – IP/UDP/RTP : По умолчанию, кодек G.711 формирует два голосовых семпла общей длительностью 20 мс, размер которых = 160 байт. Скорость потока, создаваемого G.711 = 64 Кбит/c Заголовки канального уровня (Layer 2) потребуют ещё 18 байт Заголовки сетевого уровня (IP - Layer 3) добавят ещё 20 байт Далее заголовки UDP – ещё 8 байт Наконец, RTP потребует 12 байт Таким образом, общий размер пакета, в котором будет передаваться 20 мс голоса составит: 160 + 18 + 20 + 8 + 12 = 218 байт Количество пакетов в секунду, формируемых G.711 = скорость потока кодека / размер голосовой нагрузки (сэмплов) = 64000 бит/c / (160 байт * 8 бит на байт) = 50 пакетов в секунду Теперь мы можем посчитать полосу пропускания, необходимую для передачи 50 пакетов, содержащих 20 мс голоса, которые будут передаваться по сети. Полоса пропускания = 218 байт * 8 бит на байт * 50 = 87200 бит/с = 87.2 Кбит/c. Рекомендуется ещё закладывать 5% в качестве защитного интервала: 87.2 * 1.05 = 91.56 Кбит/с Вот примерно такой должна быть полоса пропускания интернет соединения со стороны подключения удалённого телефона, и на стороне IP-АТС. Если у одной из сторон будет медленное соединение, то качество голоса будет неудовлетворительным. Зная параметры VoIP сети и используемого кодека, Вы без проблем сможете вычислить необходимую Вам полосу пропускания. Чтобы больше узнать про кодеки, рекомендуем почитать нашу статью. Телефонный звонок – это симметричное соединение. Поэтому необходимо иметь минимум 91.56 Кбит/с как для входящего трафика (download speed), так и для исходящего (upload speed). Если удалённый пользователь имеет 10 Мб на скорость скачивания (download), то это ещё не значит, что он имеет сколько же на upload. Но даже если наш удалённый пользователь будет иметь 10 Мб на скачивание и 512 Кбит на загрузку, это ещё не гарантирует нормальное VoIP соединение. Потому что полоса пропускания будет делиться между всеми активностями, которые пользователь совершает в Интернете. Догадайтесь - что будет, если наш пользователь находится в телефонном звонке, а кто-то в его сети начнёт скачивать тяжёлый файл или смотреть онлайн видео? При скачивании файлов задержка или потеря пакета может быть даже не заметна. А вот VoIP трафик передаётся в реальном времени и он очень чувствителен к задержкам и потерям пакетов. Любой из этих факторов может привести к срыву звонка. Если Вы столкнулись с такой проблемой, рекомендуем настроить Quality of Service или Traffic Shaping. Данный функционал позволяет раздать приоритеты разным видам трафика на маршрутизаторе. Более подробно о механизме QoS можно почитать в нашей статье. А здесь примеры настройки на маршрутизаторе Mikrotik. Межсетевой экран (Firewall) Необходимо точно понимать, что удалённый телефон – это телефон, который подключается к Вашей IP-АТС не напрямую. Он не находится в Вашей локальной сети (LAN) и, что ещё важнее, он не находится в Вашей виртуальной локальной сети (VPN). Поэтому, для его корректной работы, нужно будет открыть кое какие порты на роутере или межсетевом экране. 5060 - По стандарту именно этот UDP порт используется протоколом SIP для обмена сигнальной информацией. 10000 – 20000 - (В большей степени актуально для Asterisk). UDP порты используются протоколом RTP и RTCP для передачи исходящего и приема входящего аудио трафика. Если вы столкнулись с проблемой односторонней слышимости или полным её отсутствием (при условии наличия сигнализации SIP) – скорее всего, дело в RTP портах на одной из сторон соединения. 69 TFTP / 21 FTP - Порты для обмена файлами. В IP-АТС используются для автоматической настройки и обновления телефонных аппаратов при помощи функции auto-provision. Отнеситесь данному пункту очень серьёзно. Нельзя просто открывать эти порты всему миру. Необходимо также настроить правила, чтобы доступ к этим портам могли получить только доверенные устройства. Если Вы используете Asterisk/FreePBX, то рекомендуем более подробно узнать какие ещё порты может понадобиться открыть вот тут. Функционал испектирования SIP SIP ALG (Application Layer Gateway) – это функционал, который испектирует SIP трафик, который проходит через маршрутизатор и позволяет модифицировать его так, чтобы не нужно было делать проброс портов для SIP и RTP. Зачастую, администраторы, которые настраивают удалённый телефон для подключения к IP-АТС, сталкиваются именно с проблемами включенного на маршрутизаторе SIP ALG. Дело в том, что SIP ALG может изменить сигнальные пакеты так, что АТС не сможет их распознать и телефон не сможет нормально зарегистрироваться. Поэтому если Вы столкнулись с проблемой подключения телефона, рекомендуем также обратить внимание на функционал SIP ALG Вашего маршрутизатора. Многие производители включают его по умолчанию. Мы же рекомендуем либо правильно настроить его в соответствии с инструкцией от производителя, либо, если никаких других вариантов не осталось – отключить его. Вот примеры названий данного функционала у разных производителей, но все они значат одно и то же: SIP ALG SIP Helper SIP Fixup SIP Markup SIP Translation Например на роутерах Mikrotik, чтобы отключить данный функционал нужно зайти в IP → Firewall → Service Ports и убедиться, что сервис SIP выключен. Либо отключить его используя CMD Mikrotik: /ip firewall service-port disable sip Проблемы при подключении более 1 телефонного аппарата из одной и той же удаленной точки Представьте, что Вы пытаетесь зарегистрировать два удалённых телефона на своей IP-АТС. Пусть их внутренние номера будут 100 и 101. Когда эти телефоны будут отправлять запрос регистрации, то Ваша IP-АТС получит его от удалённого роутера, за которым находятся эти телефоны и запрос этот будет от одного и того же IP адреса. Может быть эти телефоны и зарегистрируются на АТС, но когда на один из этих номеров будет поступать вызов, то удалённый маршрутизатор не сможет разобраться на какой из телефонов его отправлять 100 или 101. Лучшим решением данной проблемы – будет организация виртуальной локальной сети (VPN) между удалёнными точками и IP-АТС. Тогда телефоны, находящиеся в удалённых офисах смогут регистрироваться на IP-АТС как если бы они находились в одной локальной сети.
img
OSPF (Open Shortest Path First) – дословно переводится как «Сперва открытый короткий путь» - надежный протокол внутренней маршрутизации с учетом состояния каналов (Interior gateway protocol, IGP). Как правило, данный протокол маршрутизации начинает использоваться тогда, когда протокола RIP уже не хватает по причине усложнения сети и необходимости в её легком масштабировании. OSPF наиболее широко используемый протокол внутренней маршрутизации. Когда идёт речь о внутренней маршрутизации, то это означает, что связь между маршрутизаторами устанавливается в одном домене маршрутизации, или в одной автономной системе. Представьте компанию среднего масштаба с несколькими зданиями и различными департаментами, каждое из которых связано с другим с помощью канала связи, которые дублируются с целью увеличения надежности. Все здания являются частью одной автономной системы. Однако при использовании OSPF, появляется понятие «площадка», «зона» (Area), которое позволяет сильнее сегментировать сеть, к примеру, разделение по «зонам» для каждого отдельного департамента. Видео: протокол OSPF (Open Shortest Path First) за 8 минут Для понимания необходимости данных «зон» при проектировании сети, необходимо понять, как OSPF работает. Есть несколько понятий, связанных с этим протоколом, которые не встречаются в других протоколах и являются уникальными: Router ID: Уникальный 32-х битный номер, назначенный каждому маршрутизатору. Как правило, это сетевой адрес с интерфейса маршрутизатора, обладающий самым большим значением. Часто для этих целей используется loopback интерфейс маршрутизатора. Маршрутизаторы-соседи: Два маршрутизатора с каналом связи между ними, могут посылать друг другу сообщения. Соседство: Двухсторонние отношения между маршрутизаторами-соседями. Соседи не обязательно формируют между собой соседство. LSA: Link State Advertisement – сообщение о состоянии канала между маршрутизаторами. Hello сообщения: С помощью этих сообщений маршрутизаторы определяют соседей и формируют LSA Area (Зона): Некая иерархия, набор маршрутизаторов, которые обмениваются LSA с остальными в одной и той же зоне. Зоны ограничивают LSA и стимулируют агрегацию роутеров. OSPF – протокол маршрутизации с проверкой состояния каналов. Представьте себе карту сети – для того, чтобы ее сформировать, OSPF совершает следующие действия: Сперва, когда протокол только запустился на маршрутизаторе, он начинает посылать hello-пакеты для нахождения соседей и выбора DR (designated router, назначенный маршрутизатор). Эти пакеты включают в себя информацию о соседях и состоянии каналов. К примеру, OSPF может определить соединение типа «точка-точка», и после этого в протоколе данное соединение «поднимается», т.е. становится активным. Если же это распределенное соединение, маршрутизатор дожидается выбора DR перед тем как пометить канал активным. Существует возможность изменить Priority ID для, что позволит быть уверенным в том, что DR-ом станет самый мощный и производительный маршрутизатор. В противном случае, победит маршрутизатор с самым большим IP-адресом. Ключевая идея DR и BDR (Backup DR), заключается в том, что они являются единственными устройствами, генерирующими LSA и они обязаны обмениваться базами данных состояния каналов с другими маршрутизаторами в подсети. Таким образом, все не-DR маршрутизаторы формируют соседство с DR. Весь смысл подобного дизайна в поддержании масштабируемости сети. Очевидно, что единственный способ убедиться в том, что все маршрутизаторы оперируют одной и той же информацией о состоянии сети – синхронизировать БД между ними. В противном случае, если бы в сети было 35 маршрутизаторов, и требовалось бы добавить еще одно устройство, появилась бы необходимость в установлении 35 процессов соседства. Когда база централизована (т.е существует центральный, выбранный маршрутизатор - DR) данный процесс упрощается на несколько порядков. Обмен базами данных – крайне важная часть процесса по установлению соседства, после того как маршрутизаторы обменялись hello-пакетами. При отсутствии синхронизированных баз данных могут появиться ошибки, такие как петли маршрутизации и т.д. Третья часть установления соседства – обмен LSA. Это понятие будет разобрано в следующей статье, главное, что необходимо знать – нулевая зона (Area 0) особенная, и при наличии нескольких зон, все они должны быть соединены с Area 0. Так же это называется магистральной зоной. Типы маршрутизаторов OSPF Разберем различные типы маршрутизаторов при использовании протокола OSPF: ABR Area Border Router – маршрутизатор внутри нулевой зоны, через который идет связь с остальными зонами DR, BDR Designated Router, Backup Designated Router – этот тип маршрутизаторов обсуждался выше, это основной и резервирующий маршрутизаторы, которые ответственны за базу данных маршрутизаторов в сети. Они получают и посылают обновления через Multicast остальным маршрутизаторам в сети. ASBR Autonomous System Boundary Router – этот тип маршрутизаторов соединяет одну или несколько автономных систем для осуществления возможного обмена маршрутами между ними. Подведем итоги OSPF является быстро сходящимся протоколом внутренней маршрутизации с контролем состояния каналов Процесс соседства формируется между соседними маршрутизаторами через DR и BDR, используя LSA Зоны в данном протоколе маршрутизации используются для ограничения LSA и суммирования маршрутов. Все зоны подключаются к магистральной зоне.
ВЕСЕННИЕ СКИДКИ
40%
50%
60%
До конца акции: 30 дней 24 : 59 : 59