По вашему запросу ничего не найдено :(
Убедитесь, что запрос написан правильно, или посмотрите другие наши статьи:
img
BGP - это сложный протокол маршрутизации, и бывают ситуации, когда что-то идет не так как надо. Кроме того, что он сложный, он также совершенно отличается от наших IGP протоколов (OSPF и EIGRP). В этой статье мы начнем с рассмотрения неполадок, возникающих в установлении соседства BGP, и как только это разберем, перейдем к проблемам с объявлением маршрутов, которые должны или не должны появляться! Видео: Основы BGP за 7 минут Урок 1 Начнем с нескольких простых сценариев. Два маршрутизатора BGP, которые подключены и настроены для EBGP. К сожалению, мы видим это, когда проверяем соседство BGP: Когда два маршрутизатора EBGP, которые напрямую подключены, не образуют рабочее соседство BGP, может произойти ряд ошибок: Layer 2 не позволяет нам добраться до другой стороны. Проблема уровня 3: неправильный IP-адрес на одном из маршрутизаторов. Список доступа, блокирующий TCP-порт 179 (BGP). Неправильный IP-адрес настроен для соседнего маршрутизатора BGP Мы можем использовать команду show ip bgp summary, чтобы проверить IP-адреса маршрутизаторов. Они, совпадают. Мы выполним эхо запрос, с помощью команды ping. Видим, что, пакеты не могут добраться до другой стороны. Проверяем интерфейсы и видим, что кто-то ввел команду отключения интерфейса. R2(config)#interface fa0/0 R2(config-if)#no shutdown "Поднимаем" интерфейс Это прекрасно! Наше соседство BGP установлено. Это было легко! Итог урока: убедитесь, что ваш интерфейс работает. Урок 2 Следующая неполадка похожа на предыдущую, но немного отличается. Мы используем те же маршрутизаторы и номера AS, но на этот раз необходимо установить соседство BGP между интерфейсами обратной связи. Посмотрим, как выглядит конфигурация BGP: Вот конфигурация BGP. Как вы видите, мы используем loopback интерфейсы для установления соседства BGP-соседей. Оба маршрутизатора показывают, что их сосед BGP бездействует. Есть ряд вещей, которые мы должны проверить здесь: Доступен ли IP-адрес соседа BGP? Мы не используем прямые линии связи, поэтому у нас могут возникнуть проблемы с маршрутизацией. TTL IP-пакетов, которые мы используем для внешнего BGP, равен 1. Это работает для сетей с прямым подключением, но, если они не подключены напрямую, нам нужно изменить эту настройку. По умолчанию BGP будет получать обновления с IP-адреса, ближайшего к соседу BGP. В нашем примере это интерфейс FastEthernet. Это то, что мы должны изменить. Начнем с маршрутизации. Оба маршрутизатора знают только о своих напрямую подключенных сетях. Чтобы достичь loopback интерфейсов друг друга, мы будем использовать статическую маршрутизацию. R1(config)#ip route 2.2.2.2 255.255.255.255 192.168.12.2 R2(config)#ip route 1.1.1.1 255.255.255.255 192.168.12.1 Два статических маршрута должны выполнить эту работу. Отправка ping на IP-адрес 2.2.2.2 и получение его из нашего собственного loopback интерфейса доказывает, что оба маршрутизатора знают, как связаться с loopback интерфейсом друг друга. R1(config-router)#neighbor 2.2.2.2 ebgp-multihop 2 R2(config-router)#neighbor 1.1.1.1 ebgp-multihop 2 Команда ebgp-multihop изменяет TTL на 2. Мы можем включить отладку, чтобы увидеть прогресс. Ясно видно, что R2 использует IP-адрес 192.168.12.2, а R1 отказывается от соединения. R1(config-router)#neighbor 2.2.2.2 update-source loopback 0 R2(config-router)#neighbor 1.1.1.1 update-source loopback 0 Используйте команду update-source, чтобы изменить IP-адрес источника для обновлений BGP. Соседство BGP работает! Итог урока: маршрутизаторам BGP не требуется устанавливать соседство с использованием напрямую подключенных интерфейсов. Убедитесь, что маршрутизаторы BGP могут связаться друг с другом, что пакеты BGP получены из правильного интерфейса, и в случае EBGP не забудьте использовать команду multihop. Урок 3 Продолжим рассмотрение некоторых проблем IBGP. Два маршрутизатора в одной AS и вот конфигурация: Легко и просто. Маршрутизаторы используют напрямую подключенные IP-адреса для соседства BGP. Жаль ... мы не становимся соседями. Что может быть не так? Мы используем напрямую подключенные интерфейсы, поэтому не так много проблем, если не считать проблемы L2 / L2. Отправка пинга с одного маршрутизатора на другой доказывает, что L2 и L3 работают нормально. Как насчет L3? У нас могут быть проблемы с транспортным уровнем. Я не могу подключиться к TCP-порту 179 с обоих маршрутизаторов. Это звоночек в сторону того, что что-то блокирует BGP? Вот оно! Это Служба безопасности.… Кто-то решил, что было бы неплохо "обезопасить" BGP и заблокировать его списком доступа. R2(config)#interface fastEthernet 0/0 R2(config-if)#no ip access-group 100 in Удалим список доступа. Итог урока: не блокируйте TCP-порт BGP 179. Урок 4 Следующая проблема IBGP. Это похоже на ситуацию с EBGP ранее...мы будем использовать loopback-интерфейсы для установления соседства BGP, вот конфигурации: Ничего особенного, IBGP и мы используем loopback интерфейсы. Не повезло здесь ... нет соседей. Давайте сначала проверим, могут ли маршрутизаторы получить доступ к loopback интерфейсам друг друга: Быстрый взгляд на таблицу маршрутизации показывает нам, что это не так. Мы могли бы исправить это с помощью статического маршрута или IGP. Обычно мы используем IGP для IBGP для объявления loopback интерфейсов. Сейчас будем использовать OSPF: R1(config)#router ospf 1 R1(config-router)#network 1.1.1.0 0.0.0.255 area 0 R1(config-router)#network 192.168.12.0 0.0.0.255 area 0 R2(config)#router ospf 1 R2(config-router)#network 192.168.12.0 0.0.0.255 area 0 R2(config-router)#network 2.2.2.0 0.0.0.255 area 0 Набор правильных команд OSPF должно сделать свою работу! Отправка эхо-запроса, чтобы проверить, знают ли маршрутизаторы и как связаться с сетями друг друга, успешен. Тем не менее, соседство BGP по-прежнему отсутствует Отладка показывает, что в соединении отказано, а также показывает локальный IP-адрес, который используется для BGP. Кажется, кто-то забыл добавить команду update-source, так что давайте исправим это! R1(config)#router bgp 1 R1(config-router)#neighbor 2.2.2.2 update-source loopback 0 R2(config)#router bgp 1 R2(config-router)#neighbor 1.1.1.1 update-source loopback 0 Точно так же, как EBGP, мы должны установить правильный источник для наших пакетов BGP. Задача решена! Единственное отличие от EBGP в том, что нам не нужно менять TTL с помощью команды ebgp-multihop. Итог урока: распространенная практика настройки IBGP между loopback интерфейсами. Убедитесь, что эти loopback доступны и обновления BGP получены из loopback интерфейса. Теперь, рекомендуем почитать вторую часть статьи по траблшутингу протокола BGP.
img
Софт DevOps (англ. development и operations) имеет очень большое значение для огромного количества людей, которые занимаются разработкой программного обеспечения. Для того, чтобы разобраться, что такое программа/путь DevOps и как правильно ее использовать на практике, стоит подробнее поговорить о происхождении этого набора техник. Что такое DevOps, что нужно знать и сколько получают DevOps - специалисты? Что такое практика DevOps? DevOps является одним из самых популярных способов взаимодействия между разработчиками того или иного программного обеспечения. При этом, данная практика включает в себя совокупность процессов по созданию, поддержанию и дальнейшему обслуживанию программного обеспечения. Следует сказать, что каждый процесс не может существовать друг без друга, так как именно на этом строится вся суть взаимодействия между разработчиками программного обеспечения. DevOps состоит из следующих задач, которые необходимо решить разработчикам: Непосредственное создание программного обеспечения, направленного на решение тех или иных производственных задач. Тестирование промежуточных версий или уже готовых продуктов программного обеспечения. Эксплуатация и тестирование готовой продукции на практике. Коротко: DevOps специалист должен знать сети (маршрутизацию, коммутацию) хотя бы на уровне CCNA, знать и уметь пользоваться Linux (знать CLI, основные принципы) и уметь программировать. Желательно фуллстэк – то есть фронтенд часть и бэкенд. Идеально уметь программировать на Python :) Вот что такое DevOps. Именно из этих фаз и состоит DevOps. В результате разработки, тестирования и эксплуатации и создаются все условия, которые так необходимы для качественного использования того или иного софта. Чаще всего используются следующие инструменты: Kubernetes Docker, Ansible Logstash Все эти программы предназначены для работы и управления контейнеризированными приложениями. Кроме того, Logstash позволяет искать информацию, полученную с помощью логов. Графический интерфейс Azure DevOps имеет следующий внешний вид: Для чего нужны циклы DevOps? DevOps является последовательной программой, с помощью которой можно добиться максимального количества полученной прибыли в результате того или иного действия, связанного с разработкой программного обеспечения. Практика показала, что если использовать циклы DevOps, то дневные релизы могут выйти на нормальный уровень. Это приведет к тому, что определенная компания, занимающаяся разработкой программного обеспечения, сможет подтянуть свои производственные мощности и как следует наладить получение прибыли без каких-либо негативных проявлений и последствий. Именно для оптимизации внутреннего цикла релизов программного обеспечения и прочих манипуляций, связанных с разработкой, следует использовать совокупность циклов DevOps. В том случае, если организация выпускает несколько проектов одновременно, с помощью DevOps можно увеличить количество и интенсивность выпускаемого продукта. Чем более разнообразные приложения, тем сильнее компании-разработчика помогут инструменты из DevOps. В чём суть DevOps? Суть данного производства заключается в том, чтобы использовать стандартизированное окружение для разработчиков с целью упростить процесс взаимодействия между элементами. Также внедрение стандартных элементов в классическую в среду разработки приводит к тому, что процесс начинает приобретать более стандартизированную и автоматизированную форму. Именно поэтому крупные предприятия с множественными производственными мощностями обращаются к практике DevOps для того, чтобы получить гораздо более оптимизированную производительную мощность. При этом, идеальным примером практики DevOps является автоматизация не только процессов, но ещё и даты. Для того, чтобы производство не занимало много времени, необходимо четко обозначить даты. Эти даты нельзя нарушать, так как дедлайн должен обязательно дисциплинировать разработчиков и не давать им возможности срывать сроки. Какие инструменты имеются в наборе DevOps? Сам по себе, набор практик под названием DevOps включает в себя несколько десятков различных инструментов. На сегодняшний день в список данных инструментов входят следующие варианты: Code - набор полезных инструментов, используемых в качестве основных способов анализа кода в программе; Build - набор инструментов, благодаря которым можно получать огромное количество информация касательно интеграции одного элемента программы в другой, а также получать статус сборки; Тест - пакет программ для всестороннего изучения промежуточных версий или готового продукта. При этом, данные инструменты включают в себя различные возможности, направленные на тестирование программы под разными нагрузками. Для создания промежуточных версий подойдёт инструмент под названием Пакет. При этом, в пакет входит набор артефактов и автоматическая установка приложения. С помощью данного набора программ можно создать всевозможные условия, под которыми основной продукт будет распространяться на персональные компьютеры или мобильные телефоны конечного потребителя. Релиз - ещё один пакет программ, позволяющий управлять изменениями в готовом продукте. Самое интересное, что сюда входят пакеты программ, предназначенных для налаживания выпуска и утверждения определённых партий. Для управления конфигурациями нужно налаживать инфраструктуру. Одноимённой пакет программ нужен для того, чтобы положить определенную коммуникацию между элементами производства. Всё, что с этим связано, может быть использовано в качестве основных инструментов для реализации ряда идей, связанных с прокладывания инфраструктуры. И, наконец, сюда входит так называемый мониторинг, целиком и полностью предназначенной для отладки ошибок, использования готового продукта, а также создания различных условий для его эксплуатации. Сюда можно отнести различные тесты и прочие синтетические инструменты определения эффективности работы программы. Главные участники DevOps Практика включает в себя следующих участников: Прежде всего, в DevOps можно включить все изменения, которые были проведены в штате разработчиков, а также самой программе. Само собой, сюда нужно включить и самих разработчиков, которые трудятся над данной программой. Наборы операций с элементами программ. Сюда входит отдел, занимающийся оценкой качества того или иного продукта. Сюда можно отнести также гарантию качества конечного изделия. Административный отдел осуществляет управление и поддержку готового продукта, а также создание благоприятных условий для оптимизации производства. Сюда также стоит включить координаторов операций. Все действия, которые происходят внутри пакета DevOps, направленный на полную автоматизацию и оптимизацию производства и разработки программного обеспечения и прочих продуктов. В отличие от своих конкурентов, пакет DevOps не ограничивает разработку, а всего лишь привносит в процесс больше порядка и логики. Для чего нужно использовать DevOps? DevOps решает следующие цели: Перво-наперво, это максимальное сокращение затраченного на разработку времени. При этом, сокращение ведёт не только к удешевлению конечного продукта, но ещё и отсутствию срывов дедлайна. Таким образом, конечные продукты смогут выходить гораздо чаще и стабильнее. При этом, это касается как полноценных программ, так и всевозможных патчей вместе с исправлениями. Те компании, которые практиковали DevOps, теперь реже отказываются от новых разработок и релизов. Само собой, с первым пунктом также уменьшилось количество исправлений, связанных с критическими ошибками. Теперь выпускать патчи стало гораздо удобнее для разработчика и издателя. В том случае, если во время создания того или иного продукта произошёл сбой, восстановиться гораздо проще, нежели это было раньше. Это неудивительно, ведь автоматизированное производство позволяет заменить недостающие элементы на другие, при этом не подставив весь штат. В чём заключаются основные преимущества DevOps? Преимуществ использования DevOps масса. Так, например, практика показала, что данный набор действий позволяет автоматизировать и оптимизировать производство таким образом, чтобы все эти манипуляции не коснулись непосредственно самого процесса создания конечного продукта. При этом, архитектура DevOps позволяет разработчикам экспериментировать с различными деталями и элементами системы, тем самым, не ограничивая разработчиков в полете творческой мысли. Теперь разрабатывать конечные продукты гораздо проще, чем это было раньше.
img
Как известно, в телефонии существует два основных вида перевода (или трансфера - transfer) входящих звонков, это: Attendant Transfer/ consultative transfer - Перевод звонка, при котором оператор, получив информацию от звонящего, ставит звонок на удержание, затем инициирует второй вызов третьей стороне (абоненту, с которым хочет соединиться звонящий), уведомляет о входящем вызове и лишь после разрешения третьей стороны, соединяет с вызывающим абонентом. После этого, оператор кладет трубку и больше никак не влияет на переведенный вызов. Таким образом, оператор остается уверенным в том, что звонящий соединен с нужным абонентом. В случае, если у оператора не получается дозвониться до вызываемого абонента или он сообщает, что не может в данный момент принять звонок, оператор снимает звонящего с удержания и просит его перезвонить позднее. Blind Transfer - Даже из названия становится понятно, что данный вид перевода является “слепым”, т.е оператор переводит звонок, не уведомляя третью сторону в входящем вызове. Не трудно догадаться, что если вызываемый абонент занят или не отвечает, то вызов попросту обрывается. Согласитесь, ситуация крайне нежелательная, клиентам приходится заново набирать номер, общаться с оператором, объяснять, что разговора не состоялось и т.д. Теряется время, лояльность клиентов и интерес. В IP телефонии на базе Asterisk с данной проблемой познакомились, когда начали осуществлять миграцию с аналоговых АТС. Дело в том, что аналоговые АТС по умолчанию поддерживают так называемый Transfer Recall. Данный функционал заставляет АТС перезванивать оператору, если звонок между вызывающим и вызываемым абонентами, по каким то причинам не состоялся. Оператор, в свою очередь, просил вызывающего абонента перезвонить. Проблема с потерянными вызовами после “слепого” перевода имела место быть вплоть до Asterisk версии 1.6, когда в файл feature.conf в Attended Transfer (atxfer) не был введен дополнительный функционал atxferdropcall , со значениями yes и no atxferdropcall = yes - Звонок не будет возобновлен после неудачного перевода atxferdropcall = no – Звонок будет возобновлен после неудачного перевода По умолчанию в Asterisk данная переменная имеет значение yes. Таким образом, чтобы решить проблемы с потерянными вызовами при переводе, нужно просто изменить файл feature.conf следующим образом: [general] parkext => *700 parkpos => 701-720 context => parkedcalls parkedcalltransfers = caller transferdigittimeout => 1 xfersound = beep xferfailsound = beeperr atxfernoanswertimeout = 15 atxferdropcall = no atxferloopdelay = 10 atxfercallbackretries = 2 [featuremap] blindxfer => * atxfer => # Где, atxfernoanswertimeout - Время, которое необходимо для дозвона обратно; atxfercallbackretries - Количество попыток повторного дозвона
ВЕСЕННИЕ СКИДКИ
40%
50%
60%
До конца акции: 30 дней 24 : 59 : 59