По вашему запросу ничего не найдено :(
Убедитесь, что запрос написан правильно, или посмотрите другие наши статьи:
img
Привет, друг! Сегодня в статье мы расскажем, как рассчитать IP-адрес подсети с помощью инструмента ipcalc. При управлении сетью, несомненно, придется иметь дело с подсетями. Некоторые сетевые администраторы могут довольно быстро выполнять двоичные вычисления, чтобы определить маску подсети. Тем не менее, другим может потребоваться некоторая помощь, и здесь инструмент ipcalc очень пригодится. Ipcalc на самом деле делает намного больше - он принимает на вход IP-адрес и маску сети и на выходе вы получаете адрес сети, Cisco wildcard маску, широковещательный адрес, минимальный и максимальный хост и общее количество хостов. Вы также можете использовать его в качестве учебного пособия для представления результатов подсетей в простых для понимания двоичных значениях. Некоторые из применений ipcalc: Проверить IP-адрес Показать рассчитанный широковещательный адрес Отображение имени хоста, определенного через DNS Показать сетевой адрес или префикс Как установить ipcalc в Linux Чтобы установить ipcalc, просто запустите одну из приведенных ниже команд в зависимости от используемого дистрибутива Linux. $ sudo apt install ipcalc Пакет ipcalc должен автоматически устанавливаться в CentOS / RHEL / Fedora, и он является частью пакета initscripts, но если по какой-то причине он отсутствует, вы можете установить его с помощью: # yum install initscripts #RHEL/CentOS # dnf install initscripts #Fedora Как использовать ipcalc в Linux Ниже вы можете увидеть несколько примеров использования ipcalc. Получить информацию о сетевом адресе: # ipcalc 192.168.20.0 Результат примера: Address: 192.168.20.0 11000000.10101000.00010100. 00000000 Netmask: 255.255.255.0 = 24 11111111.11111111.11111111. 00000000 Wildcard: 0.0.0.255 00000000.00000000.00000000. 11111111 => Network: 192.168.20.0/24 11000000.10101000.00010100. 00000000 HostMin: 192.168.20.1 11000000.10101000.00010100. 00000001 HostMax: 192.168.20.254 11000000.10101000.00010100. 11111110 Broadcast: 192.168.20.255 11000000.10101000.00010100. 11111111 Hosts/Net: 254 Class C, Private Internet Рассчитайте подсеть для 192.168.20.0/24. # ipcalc 192.168.20.0/24 Результат: Address: 192.168.20.0 11000000.10101000.00010100. 00000000 Netmask: 255.255.255.0 = 24 11111111.11111111.11111111. 00000000 Wildcard: 0.0.0.255 00000000.00000000.00000000. 11111111 => Network: 192.168.20.0/24 11000000.10101000.00010100. 00000000 HostMin: 192.168.20.1 11000000.10101000.00010100. 00000001 HostMax: 192.168.20.254 11000000.10101000.00010100. 11111110 Broadcast: 192.168.20.255 11000000.10101000.00010100. 11111111 Hosts/Net: 254 Class C, Private Internet Рассчитайте одну подсеть с 10 хостами: # ipcalc 192.168.20.0 -s 10 Результат: Address: 192.168.20.0 11000000.10101000.00010100. 00000000 Netmask: 255.255.255.0 = 24 11111111.11111111.11111111. 00000000 Wildcard: 0.0.0.255 00000000.00000000.00000000. 11111111 => Network: 192.168.20.0/24 11000000.10101000.00010100. 00000000 HostMin: 192.168.20.1 11000000.10101000.00010100. 00000001 HostMax: 192.168.20.254 11000000.10101000.00010100. 11111110 Broadcast: 192.168.20.255 11000000.10101000.00010100. 11111111 Hosts/Net: 254 Class C, Private Internet 1. Requested size: 10 hosts Netmask: 255.255.255.240 = 28 11111111.11111111.11111111.1111 0000 Network: 192.168.20.0/28 11000000.10101000.00010100.0000 0000 HostMin: 192.168.20.1 11000000.10101000.00010100.0000 0001 HostMax: 192.168.20.14 11000000.10101000.00010100.0000 1110 Broadcast: 192.168.20.15 11000000.10101000.00010100.0000 1111 Hosts/Net: 14 Class C, Private Internet Needed size: 16 addresses. Used network: 192.168.20.0/28 Unused: 192.168.20.16/28 192.168.20.32/27 192.168.20.64/26 192.168.20.128/25 Если вы хотите убрать двоичный вывод, вы можете использовать опцию -b, как показано ниже. # ipcalc -b 192.168.20.100 Результат: Address: 192.168.20.100 Netmask: 255.255.255.0 = 24 Wildcard: 0.0.0.255 => Network: 192.168.20.0/24 HostMin: 192.168.20.1 HostMax: 192.168.20.254 Broadcast: 192.168.20.255 Hosts/Net: 254 Class C, Private Internet Чтобы узнать больше об использовании ipcalc, вы можете использовать: # ipcalc --help # man ipcalc
img
Данная статья будет посвящена еще одному проприетарному протоколу компании Cisco Systems - VTP (VLANTrunkingProtocol), который призван решать возможные проблемы в среде коммутации в случае расширения парка оборудования организации. Для начала вспомним что же такое VLAN. VLAN – это Virtual Local Area Network, что дословно переводится как “виртуальная локальная сеть”. При создании VLAN’а хосты физической сети, объединенные общей функцией, выделяются в логическую виртуальную сеть, при этом их физическое местонахождение не имеет значения. Обычно VLAN настраивается на сетевом коммутаторе, по средствам добавления портов, за которыми находятся хосты подлежащие объединению, в группу. Выглядит это примерно так: На слайде приведен случай, когда на коммутаторе настроено два VLAN’a. Порты с 1 по 3 принадлежат VLAN’у 10, а порты с 6 по 8 находятся во VLAN’е 20. Команды, которые вводил администратор для такой конфигурации, примерно такие: Создание VLAN 10 Switch(config)# vlan 10 Switch(config)# interface range fa0/1 - 3 Switch(config-if)# switchport mode access Switch(config-if)# switchport access vlan 10 Создание VLAN 20 Switch(config)# vlan 20 Switch(config)# interface range fa0/5 - 8 Switch(config-if)# switchport mode access Switch(config-if)# switchport access vlan 20 Как видите набор команд довольно простой, но администратор вводил их на единственном коммутаторе. Хосты реальных VLAN’ов могут быть рассредоточены по сети и находиться за разными устройствами, как показано на рисунке: Как видно из рисунка хосты принадлежащие VLAN 10 рассредоточены по сети, они находятся как за коммутатором 1 так и за коммутатором 3. Для того, чтобы они могли корректно взаимодействовать, администратору вручную придется создавать VLAN на каждом устройстве и добавлять в них порты. Реальные сети могут содержать ещё больше VLAN сетей и каждую необходимо прописать вручную, в следствие чего растет вероятность допущения ошибок в конфигурации, которая может привести перекрестному соединению и многочисленным несогласованностям. Для того чтобы исключить вероятность таких ошибок и был разработан протокол VTP, который позволяет устройствам автоматически делиться информацией о настроенных на них VLAN’ах и самостоятельно вносить изменения в конфигурацию. Режимы работы VTP VTP коммутатор имеет два режима работы: Server В этом режиме можно создавать новые и вносить изменения в существующие VLAN’ы. Коммутатор будет обновлять свою базу VLAN’ов и сохранять информацию о настройках во Flashпамяти в файле vlan.dat. Генерирует и передает сообщения как от других коммутаторов, работающих в режиме сервера, так и от клиентов Client Коммутатор в этом режиме будет передавать информацию о VLAN’ах полученную от других коммутаторов и синхронизировать свою базу VLANпри получении VTPобновлений. Настройки нельзя будет поменять через командную строку такого устройства. 3) Transparent В данном режиме коммутатор будет передавать VTPинформацию другим участникам, не синхронизируя свою базу и не генерируя собственные обновления. Настройки VLAN можно поменять лишь для локального коммутатора. Типы сообщений VTP В VTPсуществует три типа сообщений: Advertisement requests Представляет из себя запрос от клиента к серверу на оповещение SummaryAdvertisement Summary advertisements Данное сообщение по умолчанию сервер отправляет каждые 5 минут или сразу же после изменения конфигурации. Subset advertisements Отправляется сразу же после изменения конфигурации VLAN, а также после запроса на оповещение. Стоит отметить, что VTPкоммутатор, который получает информацию о новых VLAN’ах, внесет ее в свою конфигурацию только в том случае, если сообщение пришло от коммутатора с большим номером ревизии. Номер ревизии это некий идентификатор “свежести” базы VLAN. Коммутатор воспринимает базу с наивысшим номером ревизии как самую “свежую” и вносит изменения в свою конфигурацию. Протокол VTPявляется проприетарным, т.е закрытым. Он сильно облегчает жизнь администраторам, работающим с оборудованием Cisco. Для оборудования других производителей существует аналогичный открытый стандарт - GVRP (GARP VLAN Registration Protocol).
img
Давайте представим себе корпоративную сеть, где мобильная и офисная телефонная сеть слиты воедино, со всеми вытекающими плюсами – как компании могут сэкономить косты и запустить новые инициативы и приложения после интеграции их проводной IP – телефонии с сотовой сетью и беспроводной сетью. Что такое конвергетная связь? Практически у каждой компании есть система телефонии в том или ином виде – для внутренних и внешних коммуникаций. Большинство компаний используют систему IP – телефонии и IP – телефоны. Как примеры можно привести такие АТС как Cisco Unified Call Manager, Asterisk, FreeSWITCH и так далее. Все звонки идут через так называемые транки – провайдерские каналы связи, подключенные к АТС. Есть два типа транков – цифровые транки (такие как ISDN, PRI и так далее) и SIP – транки, или, как их ещё иногда называют (довольно редко) – IP – транки. Мобильные сети также используются повседневно – сотрудникам выдаются корпоративные номера, которые они используют для рабочих звонков и сообщений и подключения к интернету вне офиса. А представить себе компанию без Wi – Fi сети сейчас просто невозможно – сотрудники давно привыкли работать из любого места в офисе и без большого количества проводов. Опять же, популярной становится практика BYOD – Bring Your Own Device или «Принеси Свое Устройство», когда работники используют свои мобильные телефоны, планшеты и ноутбуки для выполнения корпоративных задач. Fixed Mobile Convergence (FMC) – или конвергентная связь являет собой все три компоненты, упомянутые выше, интегрированные в одно решение. Это позволяет определять устройствам какую именно сеть или среду использовать для максимально выгодной и эффективной коммуникации. FMC – это концепт, и технически достигается разными вендорами различными способами. FMC позволит вызовы с мобильных номеров сотрудников маршрутизировать через вашу офисную АТС со всеми вытекающими последствиями: запись разговора, статистика, правила маршрутизации внутреннего номера и так далее. Вы просто делаете SIP – транк между мобильным оператором и вашей АТС. К примеру, мобильная гарнитура сотрудника также может быть зарегистрирована на корпоративной АТС как SIP – клиент и подключена к АТС через беспроводную сеть. При таком сценарии сотрудник может совершать вызовы, используя как мобильную сеть, так и беспроводную сеть для совершения звонков через его IP – АТС. Опять же, звонки тоже будут приходить на одно и то же устройство, но с двух совершенно разных направлений. Плюсы использования конвергентной сети Когда организация предоставляет гарнитуры, подобные тем, что мы упомянули выше, это позволит сэкономить много денег на мобильной связи – так как все звонки с мобильных устройств, которые сотрудники будут совершать с мобильного телефона, находясь в офисе, будут идти через корпоративную АТС. Основной вопрос здесь – это как реализовать бесшовную интеграцию, чтобы сотрудникам не приходилось подключать дополнительный софт или нажимать лишние кнопки при звонках. Как я уже упомянул, тарифы на корпоративную мобильную связь и на VoIP связь могут быть сильно выгоднее для последних. Также очень часто тарифы на SIP гораздо выгоднее тарифов на классическую аналоговую связь через ТфОП. Теперь коснёмся такой темы как международные вызовы – при внедрении FMC для компании возможно ввести такие правила, что абсолютно все международные вызовы должны идти через корпоративную телефонию, и, несмотря на то, что это все равно будет идти по повышенным тарифам, стоимость таких вызовов будет на порядки ниже по сравнению с использованием мобильной связи. А что насчет продуктивности? Все сотрудники могут быть всегда доступны по их корпоративному номеру – в случае, если они находятся вне офиса, звонок будет автоматически перенаправлен на их мобильный номер, причем вызов будет совершен соответствующей АТС – если компания имеет офисы в нескольких городах или странах, это даст большой выйгрыш по качеству связи и затратам. Некоторые FMC вендоры также предоставляют возможность использования единого ящика голосовой почты, доступного как с рабочего телефона, так и с мобильного. Более того, если в компании есть сотрудники, которые часто находятся в командировках, у вас есть возможность настроить мобильный телефон как удаленный экстеншен на корпоративной АТС и тогда они будут использовать только его – так уменьшатся затраты на оборудование и на его обслуживание. А еще, если сотрудники часто звонят из филиала в филиал, и привыкли использовать для этого мобильный телефон, это тоже позволит сильно уменьшить затраты. Конечно, бесспорным остается тот факт, что по - настоящему это будет ощущаться только при большом количестве сотрудников и наличии филиалов как таковых. Причем возможна настройка телефонов в таком режиме, когда вызов приходит сразу на два устройства и терминируется только на том, на котором подняли трубку – представляете, как это может помочь уменьшить количество неотвеченных вызовов? А вишенкой на торте является возможность реализации бесшовного роуминга между Wi – Fi сетью и сотовой сетью, тогда, к примеру, сотрудники смогут выйти из здания и вызов не прервется, а соединение автоматически переключится на сотовую сеть. Обратная ситуация также возможна – что опять - таки повлияет на затраты на сотовую связь. Некоторые FMC решения также позволяют делать более гранулярный анализ звонков и активностей сотрудников – при интеграции с CRM системой это может сильно разгрузить продавцов с операционной точки зрения. Заключение На этом все, дорогие читатели! Думаю, многие из вас, читая данную статью задумались о том, что сейчас в 2018 году множество из описанных фич используется ежедневно у вас в компании и вы даже не думали, что это называется FMC ;) В 2018 году этот концепт немного устарел, по причине повсеместного развития облачных АТС и быстрого 4G подключения с безлимитным трафиком. Однако, мы все равно подумали, что это будет нелишним про это почитать :)
ВЕСЕННИЕ СКИДКИ
40%
50%
60%
До конца акции: 30 дней 24 : 59 : 59