По вашему запросу ничего не найдено :(
Убедитесь, что запрос написан правильно, или посмотрите другие наши статьи:
img
Термин chroot jail появился еще в 1992 году но часто используется сегодня. Что же это означает и для чего используется эта операция? Что такое chroot jail? Chroot (сокращение от change root) - это операция Unix, которая изменяет видимый корневой каталог на тот, который задан пользователем. Любой процесс, который вы запускаете после операции chroot, имеет доступ только к новому определенному корневому каталогу и его подкаталогам. Эта операция широко известна как chroot jail, поскольку эти процессы не могут читать или писать вне нового корневого каталога. Для чего используется chroot jail? Chroot jail используется для создания ограниченной «песочницы» для запуска процесса. Это означает, что процесс не может злонамеренно изменять данные за пределами предписанного дерева каталогов. Еще одно применение chroot jail - это замена виртуальным машинам. Этот метод называется виртуализацией на уровне ядра и требует меньше ресурсов, чем виртуальные машины. Эта операция позволяет пользователям создавать несколько изолированных инстансов в одной системе. Как использовать chroot jail Рассмотрим на примере как создать и настроить chroot jail, чтобы он мог запускать команды bash и ls. 1. Создайте новый каталог с именем chroot_jail: mkdir chroot_jail Если мы попытаемся использовать chroot на этом каталоге, мы получим следующий вывод: Вы должны включить команду bash, прежде чем сможете использовать chroot на новом каталоге. Для этого необходимо скопировать командный файл и все связанные библиотеки в новый корневой каталог. 2. Создайте новое дерево подкаталогов внутри chroot_jail: mkdir -p chroot_jail / bin chroot_jail / lib64 / x86_64-linux-gnu chroot_jail / lib / x86_64-linux-gnu В этих подкаталогах будут храниться все необходимые элементы команд bash и ls. 3. Использование команды cp с командой which позволяет копировать команды bash и ls без указания пути, из которого вы копируете. Для этого используйте: cp $(which ls) chroot_jail/bin/ cp $(which bash) chroot_jail/bin/ Примечание. Если ваша команда bash или ls имеет псевдоним, вам необходимо снять его перед копированием. Используйте unalias [command], где [command] - это имя команды, которую вы хотите удалить. 4. Чтобы bash и ls работали в новой корневой папке, добавьте все связанные библиотеки в chroot_jail/libraries. Используйте команду ldd, чтобы узнать, какие библиотеки связаны с какой командой: ldd $(which bash) ldd $(which ls) 5. Скопируйте соответствующие библиотеки в подкаталоги lib и lib64. Для команды bash: cp /lib/x86_64-linux-gnu/libtinfo.so.6 chroot_jail/lib/x86_64-linux-gnu/ cp /lib/x86_64-linux-gnu/libdl.so.2 chroot_jail/lib/x86_64-linux-gnu/ cp /lib/x86_64-linux-gnu/libc.so.6 chroot_jail/lib/x86_64-linux-gnu/ cp /lib64/ld-linux-x86-64.so.2 chroot_jail/lib64/ Для команды ls: cp /lib/x86_64-linux-gnu/libselinux.so.1 chroot_jail/lib/x86_64-linux-gnu/ cp /lib/x86_64-linux-gnu/libc.so.6 chroot_jail/lib/x86_64-linux-gnu/ cp /lib/x86_64-linux-gnu/libpcre2-8.so.0 chroot_jail/lib/x86_64-linux-gnu/ cp /lib/x86_64-linux-gnu/libdl.so.2 chroot_jail/lib/x86_64-linux-gnu/ cp /lib64/ld-linux-x86-64.so.2 chroot_jail/lib64/ cp /lib/x86_64-linux-gnu/libpthread.so.0 chroot_jail/lib/x86_64-linux-gnu/ 6. Используйте команду chroot, чтобы изменить root на каталог chroot_jail: sudo chroot chroot_jail Примечание. При изменении корневого каталога на каталог chroot_jail запускается новый экземпляр оболочки bash. Используйте команду ls, чтобы вывести список всех файлов и каталогов в новом корневом дереве каталогов: ls -R 7. Как только вы закончите использовать новую корневую папку, выйдите из оболочки: exit Заключение После выполнения этого руководства вы сможете настроить chroot jail вместе с необходимыми ресурсами для запуска процессов и команд в новом корневом каталоге.
img
Настройка SNMP на коммутаторах и маршрутизаторах Cisco позволит вам мониторить состояние девайсов и сохранить свои нервы/время, в случаях, когда они начинают сбоить (игра на опережение). В целом, выглядит это так: сетевое устройство будет отправлять информацию о CPU, памяти, температуре, I/O и прочих на NMS (Network Management System) сервер. Изи – поехали. Настройка Подключаемся по SSH на наш сетевой узел и входим в режим конфигурации: Кстати, о том, как настроить доступ по SSH к устройствам Cisco мы написали в статье. en conf t Далее, необходимо создать группу (community), которая будет иметь права на чтение SNMP трапов (read – only). Назовем ее public: SNMP – trap (трапы) – сообщения, которые отправит девайс, находящийся под мониторингом. Они нужны для того, чтобы информировать систему сбора трапов о наступлении различных событий. snmp-server community public RO Далее, аналогичным образом создаем частную группу (с правами на чтение и запись). Назовем ее private: snmp-server community private RW Сохраняем конфигурацию в NVRAM: write memory Важно! Проверьте сетевую связность между маршрутизатором и системой NMS, куда по плану роутер будет отправлять трапы. Включаем трапы в Cisco IOS Для передачи трапов в NMS, их необходимо включить. Сделать это не трудно – дайте в консоль девайса следующую команду (она включит все возможные виды трапов): snmp-server enable traps Если вам нужно конкретизировать, например, отправлять уведомления об окружении (температура, напряжение), или получать уведомление только о BGP, конкретизируйте это (полный список трапов можно найти на сайте вендора): snmp-server enable traps envmon temperature snmp-server enable traps bgp Настройка NMS хоста И напоследок, самое главное :) Укажем IP – адрес NMS – сервера, на который необходимо отправлять наши трапы. Опять же, если хотим отправлять все: snmp-server host 192.168.0.2 public Где, конечно, вместо 192.168.0.2 нужно указать адрес вашей NMS (это может быть Nagios, MRTG, Zabbix, Cacti и многие другие). Так же, вы можете указать конкретные события, которые нужно отправлять на этот NMS: snmp-server host 192.168.0.2 public snmp bgp
img
Модель Open Systems Interconnection (OSI) – это скелет, фундамент и база всех сетевых сущностей. Модель определяет сетевые протоколы, распределяя их на 7 логических уровней. Важно отметить, что в любом процессе, управление сетевой передачей переходит от уровня к уровню, последовательно подключая протоколы на каждом из уровней. Видео: модель OSI за 7 минут Нижние уровни отвечают за физические параметры передачи, такие как электрические сигналы. Да – да, сигналы в проводах передаются с помощью представления в токи :) Токи представляются в виде последовательности единиц и нулей (1 и 0), затем, данные декодируются и маршрутизируются по сети. Более высокие уровни охватывают запросы, связанные с представлением данных. Условно говоря, более высокие уровни отвечают за сетевые данные с точки зрения пользователя. Модель OSI была изначально придумана как стандартный подход, архитектура или паттерн, который бы описывал сетевое взаимодействие любого сетевого приложения. Давайте разберемся поподробнее? #01: Физический (physical) уровень На первом уровне модели OSI происходит передача физических сигналов (токов, света, радио) от источника к получателю. На этом уровне мы оперируем кабелями, контактами в разъемах, кодированием единиц и нулей, модуляцией и так далее. Среди технологий, которые живут на первом уровне, можно выделить самый основной стандарт - Ethernet. Он есть сейчас в каждом доме. Отметим, что в качестве носителя данных могут выступать не только электрические токи. Радиочастоты, световые или инфракрасные волны используются также повсеместно в современных сетях. Сетевые устройства, которые относят к первому уровню это концентраторы и репитеры – то есть «глупые» железки, которые могут просто работать с физическим сигналом, не вникая в его логику (не декодируя). #02: Канальный (data Link) уровень Представьте, мы получили физический сигнал с первого уровня – физического. Это набор напряжений разной амплитуды, волн или радиочастот. При получении, на втором уровне проверяются и исправляются ошибки передачи. На втором уровне мы оперируем понятием «фрейм», или как еще говорят «кадр». Тут появляются первые идентификаторы – MAC – адреса. Они состоят из 48 бит и выглядят примерно так: 00:16:52:00:1f:03. Канальный уровень сложный. Поэтому, его условно говоря делят на два подуровня: управление логическим каналом (LLC, Logical Link Control) и управление доступом к среде (MAC, Media Access Control). На этом уровне обитают такие устройства как коммутаторы и мосты. Кстати! Стандарт Ethernet тоже тут. Он уютно расположился на первом и втором (1 и 2) уровнях модели OSI. #03: Сетевой (network) уровень Идем вверх! Сетевой уровень вводит термин «маршрутизация» и, соответственно, IP – адрес. Кстати, для преобразования IP – адресов в MAC – адреса и обратно используется протокол ARP. Именно на этом уровне происходит маршрутизация трафика, как таковая. Если мы хотим попасть на сайт wiki.merionet.ru, то мы отправляем DNS – запрос, получаем ответ в виде IP – адреса и подставляем его в пакет. Да – да, если на втором уровне мы используем термин фрейм/кадр, как мы говорили ранее, то здесь мы используем пакет. Из устройств здесь живет его величество маршрутизатор :) Процесс, когда данные передаются с верхних уровней на нижние называется инкапсуляцией данных, а когда наоборот, наверх, с первого, физического к седьмому, то этот процесс называется декапсуляцией данных #04: Транспортный (transport) уровень Транспортный уровень, как можно понять из названия, обеспечивает передачу данных по сети. Здесь две основных рок – звезды – TCP и UDP. Разница в том, что различный транспорт применяется для разной категории трафика. Принцип такой: Трафик чувствителен к потерям - нет проблем, TCP (Transmission Control Protocol)! Он обеспечивает контроль за передачей данных; Немного потеряем – не страшно - по факту, сейчас, когда вы читаете эту статью, пару пакетов могло и потеряться. Но это не чувствуется для вас, как для пользователя. UDP (User Datagram Protocol) вам подойдет. А если бы это была телефония? Потеря пакетов там критична, так как голос в реальном времени начнет попросту «квакать»; #05: Сеансовый (session) уровень Попросите любого сетевого инженера объяснить вам сеансовый уровень. Ему будет трудно это сделать, инфа 100%. Дело в том, что в повседневной работе, сетевой инженер взаимодействует с первыми четырьмя уровнями – физическим, канальным, сетевым и транспортным. Остальные, или так называемые «верхние» уровни относятся больше к работе разработчиков софта :) Но мы попробуем! Сеансовый уровень занимается тем, что управляет соединениями, или попросту говоря, сессиями. Он их разрывает. Помните мем про «НЕ БЫЛО НИ ЕДИНОГО РАЗРЫВА»? Мы помним. Так вот, это пятый уровень постарался :) #06 Уровень представления (presentation) На шестом уровне творится преобразование форматов сообщений, такое как кодирование или сжатие. Тут живут JPEG и GIF, например. Так же уровень ответственен за передачу потока на четвертый (транспортный уровень). #07 Уровень приложения (application) На седьмом этаже, на самой верхушке айсберга, обитает уровень приложений! Тут находятся сетевые службы, которые позволяют нам, как конечным пользователям, серфить просторы интернета. Гляньте, по какому протоколу у вас открыта наша база знаний? Правильно, HTTPS. Этот парень с седьмого этажа. Еще тут живут простой HTTP, FTP и SMTP.
ВЕСЕННИЕ СКИДКИ
40%
50%
60%
До конца акции: 30 дней 24 : 59 : 59