По вашему запросу ничего не найдено :(
Убедитесь, что запрос написан правильно, или посмотрите другие наши статьи:
img
Когда вы входите на финансовый или медицинский веб-сайт и входите в систему, вы должны ожидать, что полученная вами информация не будет перехвачена и прочитана кем-либо на пути между вашим компьютером и сервером. Менее очевидная, но не менее важная проблема заключается в том, что информация, которую вы отправляете на сайт, не должна быть открыта для изменения во время ее передачи по сети. Но как это можно обеспечить? Это две области, для решения которых можно использовать транспортную безопасность. В этой серии статей будет рассмотрено пространство проблем транспортной безопасности, а затем будет проведено исследование нескольких видов решений, включая шифрование. Наконец, в этой серии статей мы рассмотрим спецификацию безопасности транспортного уровня (TLS) в качестве примера шифрования транспортного уровня. Проблемное пространство Безопасность обычно решает одну из четырех проблем: подтверждение того, что данные не были изменены при передаче, предотвращение доступа к информации никому, кроме предполагаемого получателя, защита конфиденциальности людей, использующих сеть, и подтверждение того, что информация была доставлена. Вторая и третья проблемы, предотвращение несанкционированного доступа к данным при их передаче по сети и защита конфиденциальности пользователей, являются связанными проблемами, но будут рассматриваться отдельно в следующих разделах. Последняя отмеченная проблема, проблема доказательства обхода (которая аналогична проблеме доказательства работы, которая встречается в других контекстах информационных технологий), здесь не рассматривается, поскольку это область активных исследований с небольшим количеством развернутых систем. Проверка данных Если вы войдете на сайт своего банка и переведете 100 рублей с одного счета на другой, вы, скорее всего, будете расстроены, если на самом деле сумма перевода составит 1000 рублей или если номера счетов будут изменены, так что 100 рублей окажутся на чьем-то другом счете. Существует ряд других ситуаций, когда необходимо убедиться, что передаваемые данные совпадают с полученными, например: Если вы покупаете пару синих туфель, вы не хотите, чтобы вместо них доставили комплект красных. Если ваш врач дает вам рецепт на лекарство от изжоги (вероятно, вызванной стрессом от работы сетевым инженером), вы не хотите, чтобы вам доставляли лекарство от артрита (вероятно, из-за того, что вы печатаете так много документов и книг). Существует множество ситуаций, когда полученные данные должны совпадать с переданными, а отправитель и/или получатель должны быть поддающимися проверке. Защита данных от проверки Примеры защиты данных, приведенные выше, позволяют сделать еще один шаг вперед: вы не хотите, чтобы кто-то видел номер вашего счета, рецепт или другую информацию, когда она передается по сети. Номера счетов, пароли и любая личная информация (PII) очень важны, поскольку эти виды информации могут быть использованы для взлома счетов с целью кражи денег или даже для кражи конфиденциальной информации. Как можно защитить такую информацию? Основным средством защиты, используемым для предотвращения неавторизованных пользователей (или злоумышленников), является шифрование. Защита конфиденциальности пользователей Конфиденциальность - это не просто приятно особенность глобального интернета, это требование пользователей доверять системе. Это верно и для локальных сетей, если пользователи считают, что за ними каким-то образом шпионят, они вряд ли будут использовать сеть. Скорее всего, они будут использовать sneakernet, распечатывая информацию и перенося ее вручную, а не передавая по сети. Хотя многие люди считают, что конфиденциальность не является обоснованной проблемой, в этой области существует много обоснованных проблем. Например, в области управления информацией часто говорят: "Знание - сила". Информация о компьютере или сети дает вам определенную власть над компьютером, сетью или системой. Например, предположим, что банк настраивает автоматическое резервное копирование для определенной таблицы базы данных; когда остатки на счете, хранящемся в таблице, изменяются на определенную величину, резервное копирование запускается автоматически. Это может показаться вполне разумным вариантом резервного копирования, но оно требует исчерпания некоторого объема данных. Примечание: исчерпание данных - это информация о физических движениях людей или информация, которая может быть использована для вывода о том, что делают эти люди или эта информация. Например, если вы каждое утро едете на работу одним и тем же маршрутом, кто-то может сделать вывод, что после того, как вы проделали какую-то небольшую часть поездки в сочетании со временем суток, вы собираетесь работать. Такие же типы данных существуют и в сетевом мире; если каждый раз, в определенное время суток, через сеть передается определенный фрагмент данных определенного размера, и он случайно совпадает с определенным событием, таким как перевод денег между двумя счетами, то, когда появляются эти конкретные данные, передача должна иметь место. Просмотр, история электронной почты и другие действия в интернете-все это приводит к исчерпанию данных, которые иногда могут быть использованы для вывода содержимого потока данных, даже если поток зашифрован. Уязвимость здесь заключается в следующем: если злоумышленник создает резервную копию вместе с изменением значения учетной записи, этот человек будет точно знать, какова модель активности учетной записи. Достаточное количество таких подсказок можно превратить в целый набор планов атаки. То же самое верно и в отношении людей; знание о людях может дать вам некоторую способность влиять на людей в определенных направлениях. Хотя влияние на людей не так велико, как влияние на машины, передача власти одному человеку над другим всегда несет в себе моральные последствия, с которыми нужно обращаться осторожно. Область решений Хотя каждое решение проблем безопасности и конфиденциальности, описанных в предыдущих разделах, обычно включает в себя сложные математические вычисления, в этом разделе будут (попытаемся) описать решения без математических расчетов. Шифрование Шифрование берет блок информации (открытый текст) и кодирует его, используя некоторую форму математической операции, чтобы скрыть текст, в результате чего получается зашифрованный текст. Чтобы восстановить исходный простой текст, математические операции должны быть отменены. Хотя шифрование часто рассматривается как математическая конструкция, иногда проще начать думать о нем как о шифре подстановки с таблицей подстановок, которая меняется в зависимости от используемого ключа. Рисунок 1 иллюстрирует это. Кстати, про типы шифрования в России и за рубежом можно почитать тут. На рисунке 1 показан четырехбитовый блок информации - тривиальный пример, но все же полезный для демонстрации. Процесс шифрования концептуально представляет собой серию прямых замен: Рис. 1 Блок шифрования как таблица подстановки Если 0001 находится в исходном блоке данных (открытый текст) и используется ключ 1, то 1010 подставляется в фактический передаваемый поток (зашифрованный текст). Если 0010 обнаружен в открытом тексте и используется ключ 1, то 0100 подставляется в передаваемые данные. Если 0001 найден в открытом тексте и используется ключ 2, то в передаваемые данные подставляется 0000. Если 0110 находится в открытом тексте и используется ключ 2, то в передаваемые данные подставляется 1001. Процесс замены одного блока бит на другой называется преобразованием. Эти преобразования должны быть симметричными: они должны не только позволять шифрование открытого текста в зашифрованный текст, но они также должны позволять восстанавливать открытый текст (незашифрованный) из зашифрованного текста. В таблице подстановок этот процесс включает поиск ключа на стороне зашифрованного текста таблицы и замену эквивалента открытого текста. Размер таблицы подстановки определяется размером блока или количеством битов, кодируемых за один раз. Если, например, используется 128-битный блок, в поисковой таблице должно быть 2128 записей - действительно, очень большое количество. Этот вид пространства все еще можно быстро найти с помощью эффективного алгоритма, поэтому блок должен иметь некоторые другие особенности, кроме просто большого размера. Во-первых, шифротекстовая сторона блока подстановки должна быть как можно более случайной. Чтобы преобразование было идеальным, любой шаблон, найденный в открытом тексте, не должен быть доступен для анализа в результирующем зашифрованном тексте. Выход зашифрованного текста должен выглядеть как можно ближе к случайному набору чисел, независимо от того, какой вход. Во-вторых, блок подстановки должен быть настолько большим, насколько это практически возможно. Чем более случайным и большим является блок подстановки, тем труднее вернуться от открытого и зашифрованного текста к обнаружению используемого шаблона подстановки. Чтобы выполнить brute-force атаку против подстановки с использованием 128-битного размера блока, злоумышленник должен соотнести как можно больше из 2128 записей в блоке открытого текста с 2128 записями в блоке подстановки зашифрованного текста-если информация использует только небольшой (или разреженный) набор возможных записей из исходного 128-битного пространства, практически нет способа сделать корреляцию достаточно быстрой, чтобы сделать такую атаку практичной, учитывая, что шифрующий отправитель достаточно часто меняет свой ключ. Примечание. Когда дело доходит до размера блока, существует закон убывающей доходности; в какой-то момент увеличение размера блока не увеличивает эффективность шифра при сокрытии информации. Плотность лучше всего объяснить на примере. Предположим, что вы используете шифр прямой подстановки в английском языке, где каждая буква заменяется буквой, смещенной на четыре шага в алфавите. В этом виде (тривиального) шифра: Каждая буква А будет заменена буквой Е. Каждая буква B будет заменена буквой F. Каждая буква С будет заменена буквой G. и т.д. Теперь попробуйте зашифровать два разных предложения с помощью этого преобразования: THE SKY IS BLUE == XLI WOC MW FPYI THE QUICK BROWN FOX JUMPED OVER THE LAZY DOG == XLI UYMGO FVSAR JSB NYQTIH SZIV XLI PEDC HSK Для злоумышленника, пытающегося выяснить, как версия предложения с зашифрованным текстом соотносится с версией открытого текста, первое предложение представляет 9 совпадающих пар букв из пространства, содержащего 26 возможных букв. Есть хороший шанс, что вы сможете угадать правильное преобразование - переместитесь на четыре шага вправо - из этого небольшого образца, но возможно, что здесь задействован какой-то "трюк", из-за которого будущие сообщения, зашифрованные с помощью этого преобразования, не будут расшифрованы правильно. Однако второе предложение - это хорошо известный пример предложения, содержащего все возможные буквы английского алфавита. Преобразование может быть проверено на соответствие каждому возможному значению во всем диапазоне ввода и вывода, что делает обнаружение преобразования тривиальным. В этом примере первое предложение будет менее плотным, чем второе. В реальных криптографических системах общая идея состояла бы в том, чтобы использовать всего несколько тысяч возможных символов из 2128 или 2512 возможных символов, что создает гораздо менее плотный набор информации для работы. В какой-то момент плотность становится достаточно низкой, преобразование - достаточно сложным, а зашифрованный текст - достаточно случайным, так что не существует практического способа вычислить взаимосвязь между входом (открытым текстом) и выходом (зашифрованный текст). В реальной жизни блоки замены не вычисляются заранее таким образом. Скорее, для вычисления значения замены в реальном времени используется криптографическая функция. Эти криптографические функции принимают входной размер блока, открытый текст, выполняют преобразование и выводят правильный зашифрованный текст. Ключ - это второй вход, который изменяет выходные данные преобразования, поэтому каждый ключ приводит к тому, что преобразование производит разные выходные данные. Если размер ключа равен 128 битам, а размер блока равен 256 битам, существует 2128 × 2256 возможных выходных комбинаций из преобразования. Рисунок 2 иллюстрирует это. На рисунке 2 каждая таблица подстановки представляет собой размер блока. Если размер блока составляет 256 бит, то в каждой таблице имеется 2256 возможных замен. Каждый ключ создает новую таблицу, поэтому, если ключ составляет 128 бит, то существует 2128 возможных таблиц. Есть два основных способа атаковать такую систему шифрования. Первый способ атаковать этот тип системы шифрования-попытаться сопоставить каждое возможное входное значение с каждым возможным выходным значением, раскрывая всю таблицу подстановок. Если входные данные представляют только небольшой набор возможных входных данных (таблица используется редко или, точнее, представляет собой разреженный массив), эта задача практически невыполнима. Если пользователь меняет свой ключ, а следовательно, и конкретную таблицу среди возможного набора таблиц, достаточно часто, нет никакого способа выполнить это сопоставление быстрее, чем изменяется ключ. Примечание. Даже в больших блоках, объединенных с преобразованиями, все еще есть потенциальные слабые места, позволяющие получить почти случайный результат-другими словами, даже если преобразование близко к идеалу. Если вы соберете 23 человека в одной комнате, есть большая вероятность, что у двух из них будет один и тот же день рождения-но это кажется иррациональным, потому что есть 365 потенциальных дней (не считая високосные года), в которые человек может родиться. Причина несоответствия между тем, что должно произойти, и тем, что происходит, заключается в следующем: в реальном мире дни рождения людей группируются по очень небольшому числу дней в течение года. Таким образом, входные данные представляют собой очень плотное "пятно" в умеренно большом наборе возможных значений. Когда это происходит, разреженность данных может работать против системы шифрования. Если небольшой набор данных повторяется в большом наборе на регулярной основе, злоумышленник может сосредоточиться только на наиболее часто используемых заменах и потенциально обнаружить содержимое сообщения, достаточное для восстановления большей части смысла. Второй способ атаковать систему шифрования такого типа - атаковать само преобразование - криптографическую функцию. Помните, что эти большие таблицы подстановки часто невозможно сгенерировать, сохранить и транспортировать, поэтому используется некоторая форма криптографической функции, чтобы принимать блок открытого текста в качестве входных данных и генерировать блок зашифрованного текста в качестве выходных данных. Если бы вы могли обнаружить эту функцию преобразования, то вы могли бы вычислить вывод таким же образом, как передатчик и приемник, и расшифровать открытый текст в реальном времени. В реальном мире эта проблема усложняется из-за: Принцип Керкхоффа, согласно которому само преобразование не должно быть секретом. Скорее, только ключ, используемый для выбора таблицы из возможных, должен храниться в секрете. По крайней мере, некоторый открытый и зашифрованный текст иногда может быть восстановлен из текущей зашифрованной передачи данных по различным причинам-возможно, ошибка, или, возможно, смысл шифрования заключается в проверке текста, а не в том, чтобы не дать тексту быть прочитанным. Учитывая эти ограничения, следует учитывать несколько ключевых моментов: Сложность вычисления ключа из открытого текста, зашифрованного текста и криптографической функции (преобразования) должна быть очень высокой. Случайность вывода криптографической функции должна быть очень высокой, чтобы снизить вероятность успешных brute-force атак - просто перебора всех возможных ключей в пространстве. Ключевое пространство должно быть большим, опять же, чтобы предотвратить успешные brute-force атаки. Качество криптографической функции определяется способностью функции выдавать максимально близкий к случайному результату практически любой вход таким образом, чтобы злоумышленник не мог обнаружить, какой ключ используется, даже если у них есть как открытый текст, так и зашифрованный текст. Таким образом, криптографические функции обычно используют ту или иную форму одной из самых сложных для вычисления задач. В частности, часто используется вычисление множителей очень больших простых чисел. Что произойдет, если вы используете 128-битный блок и у вас есть 56 бит данных для транспортировки? В этой ситуации наиболее естественным образом было бы дополнить открытый текст некоторым числом: скорее всего, всеми нулями или единицами. Качество вывода в некоторой степени зависит от разреженности ввода, чем меньше диапазон чисел используется как вход, тем более предсказуемым будет выход криптографической функции. В этом случае важно использовать заполнение, максимально приближенное к случайному. Существует целая область изучения того, как дополнять блоки открытого текста, чтобы "помочь" криптографической функции создавать зашифрованный текст, максимально приближенный к случайному. Несколько раундов шифрования Одну и ту же информацию можно обрабатывать с помощью криптографической функции несколько раз. Например, если у вас есть 128-битный блок и 128-битный ключ, вы можете: Возьмите открытый текст и с помощью ключа вычислите зашифрованный текст. Назовите это ct1. Возьмите ct1 и с помощью ключа вычислите шифротекст второго раунда; назовите это ct2. Возьмите ct2 и, используя ключ, вычислите шифротекст третьего раунда; назовите это ct3. Фактический передаваемый шифротекст будет последним ct3. К чему приводит этот процесс? Помните, что качество процесса шифрования связано со случайностью выхода по отношению к входу. Каждый раунд во многих ситуациях лишь немного увеличивает случайность. В этом процессе есть точка уменьшения отдачи; обычно после третьего раунда данные не становятся "более случайными", и, следовательно, больше раундов, по сути, просто тратят вычислительную мощность и время для очень небольшого выигрыша. Криптография с открытым и закрытым ключом Существует класс криптографических функций, которые могут преобразовывать открытый текст в зашифрованный текст и обратно, используя два разных ключа. Эта возможность полезна, когда вы хотите иметь возможность зашифровать блок данных одним ключом и позволить кому-то другому расшифровать данные, используя другой ключ. Ключ, который вы держите в секрете, называется закрытым ключом, а ключ, который вы передаете другим или публикуете, называется открытым ключом. Например, чтобы доказать, что вы являетесь фактическим отправителем конкретного файла, вы можете зашифровать файл своим закрытым ключом. Теперь любой человек с вашим открытым ключом может расшифровать файл, который мог быть отправлен только вами. Обычно вы не шифруете весь блок данных своим закрытым ключом (на самом деле большинство систем, использующих пары ключей, спроектированы так, что вы не можете этого сделать). Скорее, с помощью вашего закрытого ключа создается подпись, которая может быть проверена с помощью вашего открытого ключа. Чтобы убедиться, что только человек, которому вы отправляете данные, может что-то прочитать, вы можете зашифровать некоторые данные своим открытым ключом, опубликовать их, и только человек с правильным закрытым ключом может их расшифровать. Такие системы называют криптографией с открытым ключом (иногда названия, которые выбирают инженеры, возможно, слишком очевидны), или асимметричной криптографией. В криптографии с открытым ключом открытый ключ часто "выпускается на волю"; это то, что может найти любой, у кого есть доступ к ключевому серверу или другому источнику. Альтернативой криптографии с открытым ключом является криптография с симметричным ключом. В криптографии с симметричным ключом отправитель и получатель используют один ключ, который используется как для шифрования, так и для расшифровки данных (общий секрет). Учитывая, что общие секреты (очевидно) сложно создавать и использовать, почему вообще используется криптография с симметричным ключом? При выборе между симметричной криптографией и криптографией с открытым / закрытым ключом необходимо учитывать два основных компромисса: Сложность обработки: системы криптографии с открытым ключом обычно требуют гораздо большей вычислительной мощности для шифрования и расшифровки передаваемых данных. Системы с симметричными ключами, как правило, намного проще разрабатывать и развертывать, не требуя больших вычислительных мощностей и времени. Из-за этого криптография с открытым ключом часто используется для шифрования очень небольших объемов данных, таких как закрытый ключ. Безопасность: криптография с открытым ключом обычно требует отчасти уникального набора механизмов математического преобразования. Системы с симметричным ключом, как правило, имеют более широкий диапазон доступных преобразований, которые также являются более сложными и, следовательно, более безопасными (они обеспечивают большую случайность на выходе и, следовательно, их труднее взломать). С учетом этих компромиссов и реальных требований есть место для обоих типов систем.
img
Классический стандарт связующего дерева работает нормально, но в настоящее время для современных сетей он слишком медленный 🐌 В настоящее время мы наблюдаем в наших сетях все больше и больше маршрутизации. Протоколы маршрутизации, такие как OSPF и EIGRP, намного быстрее адаптируются к изменениям в сети, чем spanning-tree. Чтобы не отставать от скорости этих протоколов маршрутизации, была создана еще одна разновидность связующего дерева... (rapid spanning tree) быстрое связующее дерево. Rapid spanning tree - это не революция spanning tree, а его эволюция. Некоторые вещи были изменены для того, что бы ускорить процесс, но с точки зрения конфигурации - это то же самое, что классический spanning tree . Я называю оригинальное spanning tree "классическим spanning tree". Азы Rapid spanning tree Помните состояние портов spanning tree? У нас есть блокирующее, прослушивающее, обучающее и пересылающее состояние порта. Это первое различие между spanning tree и rapid spanning tree. Rapid spanning tree имеет только три состояния портов: Отбрасывание; Обучение; Пересылка. Вы уже знакомы с состоянием порта в режиме обучения и пересылки, но отбрасывание - это новое состояние порта. В основном он объединяет в себе блокировку и прослушивание состояния порта. Вот хороший обзор с различными состояниями портов для spanning tree и rapid spanning tree. В таблице отображено состояние портов: активны ли они и узнают ли они MAC-адреса или нет. Помните ли вы все остальные роли портов, которые есть у spanning tree? Давайте сделаем небольшой обзор, и будет показано отличие от rapid spanning tree. Коммутатор с лучшим ID моста (priority + MAC -адрес) становится корневым мостом. Другие коммутаторы (non-root) должны найти кратчайший путь стоимости к корневому мосту. Это корневой порт. Здесь нет ничего нового, все это работает аналогично и в rapid spanning tree. На каждом сегменте может быть только один назначенный порт, иначе мы получим петлю. Порт станет назначенным портом, если он сможет отправить лучший BPDU. Коммутатор А, как корневой мост, всегда будет иметь лучшие порты, поэтому все интерфейсы будут назначены. Интерфейс fa0/16 на коммутаторе B будет назначенным портом в моем примере, потому что он имеет лучший идентификатор моста, чем коммутатор C. Здесь все еще нет ничего нового по сравнению с классическим связующим деревом. Коммутатор C получает лучшие BPDU на своем интерфейсе fa0/16 от коммутатора B, и таким образом он будет заблокирован. Это альтернативный порт, и это все еще то же самое, что и для rapid spanning tree. Вот вам новый порт, взгляните на интерфейс fa0/17 коммутатора B. Он называется резервным портом и является новым для rapid spanning tree. Однако вы вряд ли увидите этот порт в производственной сети. Между коммутатором B и коммутатором C был добавлен хаб. Обычно (без промежуточного концентратора) оба fa0/16 и fa0/17 будут назначены портами. Из-за хаба интерфейсы fa0/16 и fa0/17 коммутатора B теперь находятся в одном домене коллизий. Fa0/16 будет выбран в качестве назначенного порта, а fa0/17 станет резервным портом для интерфейса fa0/16. Причина, по которой коммутатор B видит интерфейс fa0/17 в качестве резервного порта, заключается в том, что он получает свои собственные BPDU на интерфейсах fa0/16 и fa0/17 и понимает, что у него есть два соединения с одним и тем же сегментом. Если вы удалите хаб, то fa0/16 и fa0/17 будут назначены портами точно так же, как classic spanning tree. BPDU отличается для rapid spanning tree. В classic spanning tree поле flags использовало только два бита: Topology change.; Topology change acknowledgment.; Теперь используются все биты поля flags. Роль порта, который создает BPDU, будет добавлена с помощью поля port role, оно имеет следующие параметры: Unknown; Alternate / Backup port; Root port; Designated port. Эта BPDU называется BPDUv2. Коммутаторы, работающие со старой версией spanning tree, проигнорируют эту новую версию BPDU. Если вам интересно ... rapid spanning tree и старое spanning tree совместимы! Rapid spanning tree способно работать с коммутаторами, работающими под управлением более старой версии spanning tree. Что поменялось BPDU теперь отправляются каждый hello time. Только корневой мост генерирует BPDU в classic spanning tree, и они ретранслировались non-root, если они получали его на свой корневой порт. Rapid spanning tree работает по-разному...все коммутаторы генерируют BPDU каждые две секунды (hello time). Это hello timeпо умолчанию, но вы можете его изменить. classic spanning tree использует максимального время жизни (20 секунд) для BPDU, прежде чем они будут отброшены. Rapid spanning работает по-другому! BPDU теперь используются в качестве механизма поддержания активности, аналогичного тому, что используют протоколы маршрутизации, такие как OSPF или EIGRP. Если коммутатор пропускает три BPDU от соседнего коммутатора, он будет считать, что подключение к этому коммутатору было потеряно, и он немедленно удалит все MAC-адреса. Rapid spanning tree будет принимать низшие BPDU. Classic spanning tree игнорирует их. Скорость перехода (время сходимости) является наиболее важной характеристикой rapid spanning tree. Classic spanning tree должно было пройти через состояние прослушивания и обучения, прежде чем оно переведет интерфейс в forwarding состояние, это занимает 30 секунд (таймер по умолчанию). Classic spanning было основано на таймерах. Rapid spanning не использует таймеры, чтобы решить, может ли интерфейс перейти в forwarding состояние или нет. Для этого он будет использовать переговорный (negotiation) механизм. Чуть позже я покажу вам, как это работает. Помните ли вы понятие portfast? Если мы включим portfast во время запуска classic spanning tree, оно пропустит состояние прослушивания и обучения и сразу же переведет интерфейс в forwarding состояние. Помимо перевода интерфейса в forwarding состояние, он также не будет генерировать изменения топологии, когда интерфейс переходит в состояние UP или DOWN. Мы все еще используем portfast для rapid spanning tree, но теперь он называется пограничным портом (edge port). Rapid spanning tree может только очень быстро переводить интерфейсы в forwarding состояние на edge ports (portfast) или интерфейсы типа point-to-point. Он будет смотреть на link type, и есть только два ink types: Point-to-point (full duplex); Shared (half duplex). Обычно мы используем коммутаторы, и все наши интерфейсы настроены как full duplex, rapid spanning tree видит эти интерфейсы как point-to-point. Если мы введем концентратор в нашу сеть, то у нас будет half duplex, который рассматривается как shared interface к rapid spanning-tree. Позвольте мне описать механизм быстрой синхронизации spanning tree, используя рисунок выше. Коммутатор А сверху - это корневой мост. Коммутатор B, C и D- некорневые мосты (non-root). Как только появится связь между коммутатором А и коммутатором B, их интерфейсы будут находиться в режиме блокировки. Коммутатор B получит BPDU от коммутатора A, и теперь будет происходить согласование, называемое синхронизацией. После того, как коммутатор B получил BPDU от корневого моста, он немедленно блокирует все свои порты, не обозначенные в списке non-edge. Non-edge порты - это интерфейсы для подключения к другим коммутаторам, пока edge порты- интерфейсы, настроены как portfast. Как только коммутатор B блокирует свои non-edge порты, связь между коммутатором A и коммутатором B переходит в forwarding состояние. Коммутатор B также выполнит операцию синхронизации как с коммутатором C, так и с коммутатором D, чтобы они могли быстро перейти в forwarding состояние. Главное, что следует усвоить здесь, заключается в том, что rapid spanning tree использует этот механизм синхронизации вместо механизма "таймера", который использует classic spanning tree (прослушивание → обучение → forwarding). Давайте увеличим масштаб механизма синхронизации rapid spanning tree, подробно рассмотрев коммутатор A и коммутатор B. Сначала интерфейсы будут заблокированы до тех пор, пока они не получат BPDU друг от друга. В этот момент коммутатор B поймет, что коммутатор A является корневым мостом, потому что он имеет лучшую информацию BPDU. Механизм синхронизации начнется, потому что коммутатор А установит proposal bit в поле flag BPDU. Коммутатор B получает предложение от коммутатора A и понимает, что он должен что-то сделать. Он заблокирует все свои non-edge интерфейсы и запустит синхронизацию в направлении коммутатора C и коммутатора D. Как только коммутатор B перевед свои интерфейсы в режим синхронизации, это позволит коммутатору А узнать об этом, отправив соответствующее соглашение. Это соглашение является копией proposal BPDU, где proposal bit, был switched off, а agreement bit - switched on. Интерфейс fa0/14 на коммутаторе B теперь перейдет в режим forwarding. Как только коммутатор A получит соглашение от коммутатора B, он немедленно переведет свой интерфейс fa0/14 в режим пересылки. А как насчет интерфейса fa0 / 16 и fa0 / 19 на коммутаторе B? Точно такой же механизм синхронизации будет иметь место и сейчас на этих интерфейсах. Коммутатор B направит предложение по своим интерфейсам fa0/16 и fa0/19 в сторону коммутатора C и коммутатора D. Коммутатор C и коммутатор D не имеют никаких других интерфейсов, поэтому они отправят соглашение обратно на коммутатор B. Коммутатор B переведет свои интерфейсы fa0/16 и fa0/19 в режим forwarding, и на этом мы закончим. Этот механизм синхронизации - всего лишь пара сообщений, летающих туда-сюда, и очень быстро, это намного быстрее, чем механизм на основе таймера classic spanning tree! Что еще нового в rapid spanning tree? Есть еще три вещи: UplinkFast; Механизм изменения топологии; Совместимость с классическим связующим деревом. Когда вы настраиваете classic spanning tree, вы должны включить UplinkFast самостоятельно. Rapid spanning tree использует UpLinkFast по умолчанию, вам не нужно настраивать его самостоятельно. Когда коммутатор теряет свой корневой порт, он немедленно переводит свой альтернативный порт в forwarding. Разница заключается в том, что classic spanning tree нуждалось в multicast кадрах для обновления таблиц MAC-адресов всех коммутаторов. Нам это больше не нужно, потому что механизм изменения топологии для rapid spanning tree отличается. Так что же изменилось в механизме изменения топологии? С classic spanning tree сбой связи вызвал бы изменение топологии. При использовании rapid spanning tree сбой связи не влияет на изменение топологии. Только non-edge интерфейсы (ведущие к другим коммутаторам), которые переходят в forwarding состояние, рассматриваются как изменение топологии. Как только коммутатор обнаружит изменение топологии это произойдет: Он начнет изменение топологии при значении таймера, которое в два раза превышает hello time. Это будет сделано для всех назначенных non-edge и корневых портов.; Он будет очищать MAC-адреса, которые изучаются на этих портах.; До тех пор, пока происходит изменение топологии, во время активности таймера, он будет устанавливать бит изменения топологии в BPDU, которые отправляются из этих портов. BPDU также будет отправлен из своего корневого порта.; Когда соседний коммутатор получит этот BPDU с установленным битом изменения топологии, произойдет следующее: Он очистит все свои MAC-адреса на всех интерфейсах, кроме того, на котором он получил BPDU с включенным изменением топологии.; Он запустит изменение топологии во время самого таймера и отправит BPDU на все назначенные порты и корневой порт, установив бит изменения топологии.; Вместо того, чтобы отправлять изменения топологии вплоть до корневого моста, как это делает classic spanning tree, изменение топологии теперь быстро распространяется по всей сети. И последнее, но не менее важное, давайте поговорим о совместимости. Rapid spanning tree и classic spanning tree совместимы. Однако, когда коммутатор, на котором работает Rapid spanning tree, связывается с коммутатором, на котором работает classic spanning tree, все функции скоростной передачи данных не будут работать! В приведенном выше примере у меня есть три коммутатора. Между коммутатором A и коммутатором B мы запустим rapid spanning tree. Между коммутатором B и коммутатором C мы вернемся к classic spanning tree.
img
Статьи по тематике устранение неисправностей связаны с определенным набором решений проблем. В случае с Linux и Unix полезно иметь некое руководство по доступным инструментам, облегчающим работу по поиску и устранению проблем. Это такой документ, который содержит основные важные команды, позволяющие облегчить жизнь администраторам Linux/Unix при возникновении проблем. Команда "list open files" или команда lsof выглядит достаточно просто, но ее использование в качестве инструмента для устранения неполадок не так очевиден, как кажется на первый взгляд. Например, если у неизвестного процесса открыто несколько файлов, знание того, какие они есть, может помочь определить, является ли процесс легитимным. В первой статье рассмотрим множество вариантов использования команды lsof. Во второй статье рассмотрены рекомендации о том, как исправлять проблемы этим множеством вариаций данной команды. Контрольные вопросы, которые следует задать себе при диагностике проблем, является предметом нашей третьей статьи. Это поможет навести порядок в хаосе, который создают некоторые проблемы. Работа с базами данных Oracle - обычная задача администратора, и немного узнать о них и о том, как тестировать соединения с ними, - ценный инструмент, описанный в четвертой статье. Если проблема связана с подключением, отпадает потребность в вызове администратора баз данных. В завершении нашего руководства приведена статья с инструкциями по командам, необходимым для управления дисками и разбиения их на разделы. Команда lsof Команда lsof - это нечто большее, чем вы можете себе представить. Узнайте обо всех возможностях ее применения для поиска и устранения неполадок. lsof - команда Unix/Linux, которая отображает все открытые файлы или идентифицирует процессы, открытые конкретными файлами. Удобная для оценки безопасности ИС, а также для устранения проблем lsof предлагает широкий спектр параметров, позволяющие использовать её различными способами - иногда даже превосходя команду ps для просмотра процессов и команду netstat для исследования сетевых интерфейсов. Что такое открытые файлы? Для начала давайте рассмотрим, что такое открытые файлы и почему они вам могут быть интересны. Открытые файлы - это файлы, которые использует какой-либо процесс. Этот процесс может быть командой, которую вы выполняете, или приложением, запущенным на сервере, которым вы управляете. Открытые файлы могут включать файлы данных и библиотеки, которые предоставляют общие процедуры. Многие файлы открываются каждый раз, когда вы входите в систему. Вы можете быть удивлены их количеством. Если вам интересно, сколько файлов у вас открыто прямо сейчас, попробуйте эту команду: $ lsof -u admin | wc -l 1715 И если вы когда-нибудь слышали, что для Unix все является файлом, вы, возможно, не слишком удивитесь, узнав, что lsof работает с такими вещами, как сетевые интерфейсы, которые большинство из нас обычно не считают файлами. Почему нам это важно? Иногда появляется необходимость узнать об открытых файлах, потому что вы пытаетесь удалить файл и обнаруживаете, что он уже используется. Может быть, он заполняет ваше дисковое пространство. Вам необходимо узнать, каким файлом какой процесс открыт, чтобы можно было остановить его и очистить файл. В других случаях вам понадобится узнать, что делает неизвестный подозрительный процесс, и только изучение файлов, которые открыл подозрительный процесс, может предоставить ценную информацию. Принцип работы lsof? При применении команды lsof без параметров в терминале выводятся все файлы, которые открыты (используются) в вашей системе. Если вы запустите lsof от своего имени, вы получите длинный список файлов, но выходные данные будут включать в себя множество сообщений об отказе в разрешении - многие из них представляют открытые файлы в файловой системе /proc, которые вам не разрешено видеть. Запустите команду от имени root, и вы увидите больше выходных данных. Что еще интересного? Беглый взгляд на довольно большой справочник lsof отобразит вам, что мы увидели только меньшую ее часть возможностей. lsof имеет обширный список опций. В этой статье мы разберем наиболее полезные. Чтобы начать работу со всеми этими параметрами, вам необходимо о том знать о возможности использования более одной опции. Для этого используйте слово OR. Таким образом, вы получаете список, объединяющий результаты указанных вами параметров. Помимо этого вы можете выбрать вариант, со служебным словом AND. В этом случае ваши опции будут применяться вместе. Другими словами, вы увидите те файлы, процессы и т. д., которые соответствуют всем указанным вами параметрам. Для применения объединения AND, добавьте в свою команду параметр -a. Полезные параметры lsof Примеры использования lsof с параметрами, отображены на скриншотах ниже. Они демонстрируют наиболее полезные вещи, которые вы можете применить с данной командой. На скриншоте ниже lsof, перечисляет все процессы, у которых открыт конкретный файл: На этом скриншоте выводится список всех процессов, у которых есть открытые файлы в определенном каталоге: На этом скриншоте показаны файлы, открытые bash: На этом скриншоте, но с использованием подстроки вместо полного имени процесса: На этом скриншоте перечислены открытые файлы для определенного идентификатора процесса: lsof помогает изучить сетевые подключения: На скриншоте показан пример просмотра портов и/или установленных соединений. Также можно сетевые подключения для одного конкретного источника. Просмотр файлов пользователем На этом скриншоте lsof просматриваем открытые файлы для конкретного пользователя: Для просмотра открытых файлов всех пользователей, кроме определенного (здесь это root), используйте знак ^: Перечислить идентификаторы процессов для процессов, запускаемых конкретным пользователем: $ sudo lsof -t -u froggy 15352 15353 Завершить все процессы, принадлежащие конкретному пользователю: $ sudo kill lsof -t -u froggy Используйте параметр -a для использования оператора AND для объединения ваших опций вместе, помня, что это ограничивает вывод только тем, что соответствует всем указанным условиям:
ВЕСЕННИЕ СКИДКИ
40%
50%
60%
До конца акции: 30 дней 24 : 59 : 59