По вашему запросу ничего не найдено :(
Убедитесь, что запрос написан правильно, или посмотрите другие наши статьи:
img
Apache Cassandra — это программное обеспечение распределенной базы данных с открытым исходным кодом для работы с базами данных NoSQL. Это программное обеспечение использует язык запросов Cassandra - CQL в качестве основы для связи. CQL хранит данные в таблицах, организованных в виде набора строк со столбцами, содержащими пары ключ-значение. Таблицы CQL сгруппированы в контейнеры данных, которые в Cassandra называются пространствами ключей (keyspace). Данные, хранящиеся в одном пространстве ключей, не связаны с другими данными в кластере. Таким образом, вы можете иметь таблицы для разных целей в отдельных пространствах ключей в кластере, и данные не будут совпадать. В этом руководстве вы узнаете, как создать таблицу Cassandra для различных целей, а также как изменять, удалять или очищать таблицы с помощью оболочки Cassandra. Выбор пространства ключей для таблицы Cassandra Прежде чем вы начнете добавлять таблицу, вам нужно определить пространство ключей, в котором вы хотите создать свою таблицу. Есть два варианта сделать это. Вариант 1: команда USE Запустите команду USE, чтобы выбрать пространство клавиш, к которому будут применяться все ваши команды. Для этого в оболочке cqlsh введите: USE keyspace_name; Затем вы можете начать добавлять таблицы. Вариант 2. Укажите имя пространства ключей в запросе Второй вариант — указать имя пространства ключей в запросе на создание таблицы. Первая часть команды перед именами столбцов и параметрами выглядит так: CREATE TABLE keyspace_name.table_name Таким образом, вы сразу же создаете таблицу в заданном пространстве ключей. Базовый синтаксис для создания таблиц Cassandra Создание таблиц с помощью CQL похоже на SQL-запросы. В этом разделе мы покажем вам основной синтаксис для создания таблиц в Cassandra. Основной синтаксис для создания таблицы выглядит следующим образом: CREATE TABLE tableName ( columnName1 dataType, columnName2 dataType, columnName2 datatype PRIMARY KEY (columnName) ); При желании вы можете определить дополнительные свойства и значения таблицы, используя WITH: WITH propertyName=propertyValue; Например, используйте его, чтобы определить, как хранить данные на диске или использовать ли сжатие. Типы первичных ключей Cassandra Каждая таблица в Cassandra должна иметь первичный ключ, что делает строку уникальной. С первичными ключами вы определяете, какой узел хранит данные и как он их разделяет. Существует несколько типов первичных ключей: Простой первичный ключ. Содержит только одно имя столбца в качестве ключа секции, чтобы определить, какие узлы будут хранить данные. Составной первичный ключ. Использует один ключ разделения и несколько столбцов кластеризации, чтобы определить, где хранить данные и как их сортировать в разделе. Составной ключ раздела. В этом случае есть несколько столбцов, которые определяют, где хранить данные. Таким образом, вы можете разбить данные на более мелкие части, чтобы распределить их по нескольким разделам, чтобы избежать горячих точек. Как создать таблицу Cassandra В следующих разделах объясняется, как создавать таблицы с различными типами первичных ключей. Сначала выберите пространство ключей, в котором вы хотите создать таблицу. В нашем случае: USE businesinfo; Каждая таблица содержит столбцы и тип данных Cassandra для каждой записи. Создать таблицу с простым первичным ключом Первый пример — это базовая таблица с поставщиками. Идентификатор уникален для каждого поставщика и будет служить первичным ключом. CQL-запрос выглядит следующим образом: CREATE TABLE suppliers ( supp_id int PRIMARY KEY, supp_city text, supp_email text, supp_fee int, supp_name text, supp_phone int ); Этот запрос создал таблицу с именем supplier с supp_id в качестве первичного ключа для таблицы. Когда вы используете простой первичный ключ с именем столбца в качестве ключа раздела, вы можете поместить его либо в начало запроса (рядом со столбцом, который будет служить первичным ключом), либо в конец, а затем указать имя столбца: CREATE TABLE suppliers ( supp_id int, supp_city text, supp_email text, supp_fee int, supp_name text, supp_phone int PRIMARY KEY(supp_id) ); Чтобы увидеть, находится ли таблица в пространстве ключей, введите: DESCRIBE TABLES; В выводе перечислены все таблицы в этом пространстве ключей, а также та, которую вы создали. Чтобы отобразить содержимое таблиц, введите: SELECT * FROM suppliers; Вывод показывает все столбцы, определенные при создании таблицы. Другой способ просмотреть сведения о таблице — использовать DESCRIBE и указать имя таблицы: DESCRIBE suppliers; В выходных данных отображаются столбцы и настройки по умолчанию для таблицы. Создать таблицу с составным первичным ключом Чтобы запросить и получить результаты, отсортированные в определенном порядке, создайте таблицу с составным первичным ключом. Например, создайте таблицу для поставщиков и всех продуктов, которые они предлагают. Поскольку продукты могут не быть уникальными для каждого поставщика, необходимо добавить один или несколько столбцов кластеризации в первичный ключ, чтобы сделать его уникальным. Схема таблицы выглядит так: CREATE TABLE suppliers_by_product ( supp_product text, supp_id int, supp_product_quantity text, PRIMARY KEY(supp_product, supp_id) ); В этом случае мы использовали supp_product и supp_id для создания уникального составного ключа. Здесь первая запись в скобках supp_product — это ключ раздела. Он определяет, где хранить данные, то есть как система разделяет данные. Следующая запись — столбец кластеризации, определяющий, как Cassandra сортирует данные, в нашем случае — по supp_id. Изображение выше показывает, что таблица была успешно создана. Чтобы проверить детали таблицы, запустите запрос DESCRIBE TABLE для новой таблицы: DESCRIBE TABLE suppliers_by_product; Настройки по умолчанию для порядка кластеризации — по возрастанию (ASC). Вы можете перейти на нисходящий (DESC), добавив следующий оператор после первичного ключа: WITH CLUSTERING ORDER BY (supp_id DESC); Мы указали один столбец кластеризации после ключа раздела. Если вам нужно отсортировать данные с использованием двух столбцов, добавьте еще один столбец в скобки первичного ключа. Создание таблиц с использованием составного ключа раздела Создание таблицы с составным ключом раздела полезно, когда на одном узле хранится большой объем данных, и вы хотите разделить нагрузку на несколько узлов. В этом случае определите первичный ключ с ключом секции, состоящим из нескольких столбцов. Вам нужно использовать двойные скобки. Затем добавьте столбцы кластеризации, как мы делали ранее, чтобы создать уникальный первичный ключ. CREATE TABLE suppliers_by_product_type ( supp_product_consume text, supp_product_stock text, supp_id int, supp_name text, PRIMARY KEY((supp_product_consume, supp_product_stock), supp_id) ); В приведенном выше примере мы разделили данные на две категории: расходные материалы поставщика и продукты, запасаемые на складе, и распределили данные с помощью составного ключа раздела. Примечание. При таком разделении каждая категория продуктов хранится на отдельном узле, а не в одном разделе. Если вместо этого вы используете составной первичный ключ с простым ключом раздела и несколькими столбцами кластеризации, то один узел будет обрабатывать все данные, отсортированные по нескольким столбцам. Удалить таблицу в Cassandra Чтобы удалить таблицу в Cassandra, используйте оператор DROP TABLE. Чтобы выбрать таблицу, которую вы хотите удалить, введите: DESCRIBE TABLES; Найдите таблицу, которую хотите удалить. Используйте имя таблицы, чтобы удалить ее: DROP TABLE suppliers_by_product_type; Запустите запрос DESCRIBE TABLES еще раз, чтобы убедиться, что вы успешно удалили таблицу. Изменить таблицу в Cassandra Cassandra CQL позволяет добавлять или удалять столбцы из таблицы. Используйте команду ALTER TABLE, чтобы внести изменения в таблицу. Добавить столбец в таблицу Перед добавлением столбца в таблицу рекомендуется просмотреть содержимое таблицы, чтобы убедиться, что имя столбца еще не существует. После проверки используйте запрос ALTER TABLE в этом формате, чтобы добавить столбец: ALTER TABLE suppliers_by_product ADD supp_name text; Снова используйте DESCRIBE TABLE, чтобы убедиться, что столбец появился в списке. Удалить столбец из таблицы Подобно добавлению столбца, вы можете удалить столбец из таблицы. Найдите столбец, который вы хотите удалить, с помощью запроса DESCRIBE TABLES. Затем введите: ALTER TABLE suppliers_by_product DROP supp_product_quantity; Примечание. Не указывайте тип данных для столбца, если вы хотите удалить его из таблицы. Вы получите ошибку “SyntaxException: line 1:48 mismatched input ‘text’ expecting EOF (ALTER TABLE suppliers_by_product DROP supp_name [text]…)” Очистить таблицу в Cassandra Если вы не хотите удалять всю таблицу, но вам нужно удалить все строки, используйте команду TRUNCATE. Например, чтобы удалить все строки из таблицы поставщиков, введите: TRUNCATE suppliers; Чтобы убедиться, что в вашей таблице больше нет строк, используйте оператор SELECT. После очистки таблицы изменения становятся постоянными, поэтому будьте осторожны при использовании этого запроса. Итоги В этом руководстве показано, как создавать таблицы в Cassandra для различных целей с использованием простых и составных первичных ключей. Примеры также включали использование составного ключа раздела для распределения данных по узлам. Мы также рассмотрели, как вы можете удалять, изменять и очищать таблицы в Cassandra. Убедитесь, что вы удаляете или вносите изменения в правильные таблицы, чтобы избежать потенциальных проблем.
img
API расшифровывается как Application Programming Interface (программный интерфейс приложения). Что же это такое? По сути, это описание способов взаимодействия между программами, как они могут общаться и передавать данные друг другу. Рассмотрим пример из жизни: Приходя в ресторан вы взаимодействуйте с официантом - можете попросить меню, сделать заказ, попросить принести счет. Официант является интерфейсом вашего взаимодействия с рестораном - вам не нужно знать о том как готовится еда, ингредиенты, как рассчитывать чек, все это сделает ресторан, и отдаст вам результаты при помощи официанта, который в этом примере представляет собой API ресторана. От вас скрываются сложные детали и просто происходит общение между двумя системами - клиентом и рестораном. Вернемся к компьютерам. Предположим, что у нашей платформы доступного айти образования Merion Academy есть интерфейс работы с клиентами - тот самый API, в котором есть определенные функции, куда можно отправить какой - то запрос, и получить ответ. Представим, что у нашего API есть функция вернуть список курсов по Linux, на которые сейчас действует скидка 50% - в такой случае браузер должен сделать запрос к нашему API на получение такого списка курсов, а ответ получить эти данные и отрисовать на странице. Важно учесть, что API интерфейсы не всемогущи - вы получите только те функции, которые заложил разработчик. Например, если помимо курсов по Linux со скидкой 50% вы захотите еще получить прогноз погоды в селе “Добрые Пчёлы” - то сорри, наш API пока так не умеет. Для добавления каждой такой новой функции программист должен разработать ее. API состоит из двух частей: это сам интерфейс взаимодействия, скажем так некий мост, портал, окно, а вторая часть - это его описание, которое отвечает на вопрос “а как этой штукой то пользоваться?” Взаимодействие может быть не только между клиентом и сервером, как в примере с нашей ИТ платформой, но и между серверами. Представьте: решили вы полететь в солнечный Дубай, купили билетик на сайте, а он вам еще и погоду показывает. Как же так! Неужели у компании по продаже билетов еще и метеорологические датчики по всему миру стоят, которые сообщают о погоде? Конечно нет - сайт с билетами взаимодействует с каким - то сервисом погоды по API, который как раз занимается погодными данными. А сайт с билетиками еще и скорее всего платит за каждый запрос небольшую денюжку. Кстати, API может быть не только у веб - сервисов, где общение происходит по протоколу HTTP. API есть и у операционных систем, для взаимодействия с самой операционкой и железом. Например, если вы создаете свой аналог инстаграма, то для работы с камерой на устройстве вам нужно взаимодействовать с API системы, которая уже знает как работать с камерой, а не придумывать что-то самому с нуля, да еще и для миллиона разных устройств. API действительно делает жизнь разработчика удобнее, а чтобы работа с API не превратилась в бардак, оно стандартизировано. Самый популярный, это конечно же REST API, но перед тем как перейти к нему, скажем пару слов про SOAP (Service Object Access Protocol), который появился несколько раньше и описывал правила синтаксиса для сообщений запросов и ответов, отправляемых веб-приложениями. Подробнее про SOAP - тут. Ну и все, кто поддерживал SOAP должны были обмениваться XML-сообщениями между системами через HTTP или SMTP. XML (Extensible Markup Language), он же расширяемый язык разметки - это формат для хранения и передачи данных, в котором данные размещены в тегах, что делает их легко читаемыми как для компьютера, так и для человека. Развиваясь, люди перешли на REST, который в отличии от SOAP не является протоколом, а является архитектурным стилем. В SOAP приходилось писать в разы больше кода и заворачивать каждое сообщение в XML. REST же делает данные доступными в качестве ресурсов, которые представлены уникальным URL-адресом, и можно запросить этот ресурс, указав его URL-адрес. Например чтобы посмотреть свои подписки на ютубе нужно выполнить запрос на вот такой адрес https://www.youtube.com/feed/subscriptions. Веб-API, соответствующие стандартам подхода REST, называются RESTful API. Они используют различные HTTP-запросы для работы с ресурсами, такие как GET - запрос, который используется для получения информации или POST, который в свою очередь нужен для отправки данных. RESTful системы поддерживают обмен сообщениями в различных форматах, таких как самый обычный текст, HTML формат, YAML, XML и JSON, в то время как SOAP разрешает только XML, как мы и сказали ранее. Самый популярный это конечно JavaScript Object Notation, он же JSON - простой и универсальный формат, который содержит в себе набор пар ключ:значение. Также хотим сказать про штуку, которая называется gRPC (Remote Procedure Calls) которая в основном используется для связи между разными сервисами и работает очень быстро благодаря тому что тут используется протокол HTTP/2 который работает гораздо быстрее засчет всяких новинок вроде сжатия хедеров, а вместо JSON или XML используется формат Protocol Buffers (protobuf), который работает быстрее и потребляет меньше ресурсов при работе с ним. Работает все это настолько быстро, что можно делать вызов к функции на другом сервере с такой же скоростью, как если бы она находилась на нашем. Подробнее про gRPC и Protobuf - тут Ну и не можем не сказать про модный GraphQL - это язык запросов для API который позволяет указывать точные данные, которые ему нужны, и упрощает получение и склейку данных из нескольких источников, поэтому разработчик может использовать один вызов API для запроса всех необходимых ему данных.
img
Всем привет! Недавно одну из наших статей мы посвятили рассказу о Route Patterns. Сегодня мы продолжим рассматривать механизм маршрутизации звонка в Cisco Unified Communications Manager (CUCM), и рассмотрим, что происходит с вызовом после того как он попал под определенный паттерн – а именно про Route List и Route Group. Рассмотрим, как происходит процесс маршрутизации. После набора номера в Route Patterns происходит сверка с заданными паттернами и выбирается подходящий, который указывает на Route List, который указывает на группы Route Group, которые в свою очередь указывают на устройства, шлюзы и транки. Настройка Route Group Для создания группы нужно перейти во вкладку Call Routing → Route/Hunt → Route Group и нажимаем Add New. Тут указываем название группы и в поле Distribution Algorithm выбираем, по какому алгоритму будут распределяться устройства – Top Down или Circular. Сами устройства, транки или шлюзы выбираем в поле Available Devices и для добавления в группу нажимаем кнопку Add to Route Group. После этого добавленное устройство появляется в поле Selected Devices. Для сохранения настроек нажимаем Save. Настройка Route List. Чтобы создать список нужно вкладку Call Routing → Route/Hunt → Route List и нажать Add New. Здесь указываем название, описание и группу (по умолчанию – Default). После нажатия Save внизу появляется поле Route List Member Information, в котором нужно нажать кнопку Add Route Group. В открывшемся окне в строке Route Group выбираем необходимую группу и нажимаем Save. Также в этом окне содержатся настройки трансформации номеров. После этого добавленная группа появится в поле Selected Groups. Затем добавляем остальные группы и сохраняем настройки. Проверить получившийся маршрут можно перейдя во вкладку Call Routing → Route Plan Report. Здесь можно увидеть список паттернов Route Patterns, список Route List на который они указывают, группы Route Groups, которые содержит список и устройства, шлюзы и транки, указанные в группе. Это наглядно показывает в иерархическом порядке структуру маршрутизации.
ВЕСЕННИЕ СКИДКИ
40%
50%
60%
До конца акции: 30 дней 24 : 59 : 59