По вашему запросу ничего не найдено :(
Убедитесь, что запрос написан правильно, или посмотрите другие наши статьи:
img
Третья часть тут Поскольку трафик в реальном времени начал передаваться по сетям с коммутацией пакетов, QoS стал серьезной проблемой. Передача голоса и видео полагается на то, что сеть способна быстро переносить трафик между хостами (с низкой задержкой) и с небольшими колебаниями межпакетного разнесения (jitter). Дискуссии вокруг QoS фактически начались в первые дни сети с коммутацией пакетов, но достигли высшей точки примерно в то время, когда рассматривался ATM. На самом деле, одним из главных преимуществ ATM была возможность тщательно контролировать способ, которым обрабатывались пакеты, когда они передавались по сети с коммутацией пакетов. С провалом ATM на рынке, появились два направления идей о приложениях, которые требуют сильного контроля над jitter и delay: Эти приложения никогда не будут работать в сетях с коммутацией пакетов. Такого рода приложения всегда должны запускаться в отдельной сети. Это просто поиск правильного набора элементов управления QoS, чтобы позволить таким приложениям работать в сетях с коммутацией пакетов. Основное, что больше всего волновало большинство провайдеров и инженеров, была голосовая связь, и основной вопрос сводился к следующему: можно ли обеспечить приличную голосовую связь по сети, также передающей большие файлы и другой "nonreal - time" трафик? Были изобретены сложные схемы, позволяющие классифицировать и маркировать пакеты (называемые QoS-маркировкой), чтобы сетевые устройства знали, как правильно их обрабатывать. Картографические системы были разработаны для переноса этих маркировок QoS из одного типа сети в другой, и много времени и усилий было вложено в исследование механизмов массового обслуживания-порядка, в котором пакеты отправляются по интерфейсу. На рис. 1 показана примерная диаграмма одной системы QoS, и сопоставления между приложениями и маркировками QoS будет достаточно, чтобы проиллюстрировать сложность этих систем. Увеличение скорости связи оказывают двойной эффект на обсуждение QoS: Более быстрые каналы связи будут (это очевидно) нести больше данных. Поскольку любой отдельный голосовой и видеопоток становится сокращающейся частью общего использования полосы пропускания, необходимость строго сбалансировать использование полосы пропускания между различными приложениями стала менее важной. Время, необходимое для перемещения пакета из памяти в провод через микросхему, уменьшается с каждым увеличением пропускной способности. По мере того, как доступная пропускная способность увеличивалась, потребность в сложных стратегиях массового обслуживания для противодействия jitter становилась все менее значимой. Это увеличение скорости было дополнено новыми системами массового обслуживания, которые гораздо эффективнее управляют различными видами трафика, уменьшая необходимость маркировки и обработки трафика детализированным способом. Такое увеличение пропускной способности часто обеспечивалось переходом от медного волокна к стекловолокну. Оптоволокно не только обеспечивает большую полосу пропускания, но и более надежную передачу данных. Способ построения физических связей также эволюционировал, делая их более устойчивыми к поломкам и другим материальным проблемам. Вторым фактором, увеличивающим доступность полосы пропускания, стал рост Интернета. По мере того, как сети становились все более распространенными и более связанными, отказ одного канала оказывал меньшее влияние на объем доступной полосы пропускания и на потоки трафика по сети. Поскольку процессоры стали быстрее, появилась возможность разрабатывать системы, в которых отброшенные и задержанные пакеты будут иметь меньшее влияние на качество потока в реальном времени. Увеличение скорости процессора также позволило использовать очень эффективные алгоритмы сжатия, уменьшая размер каждого потока. На стороне сети более быстрые процессоры означали, что control plane могла быстрее вычислять набор loop-free путей через сеть, уменьшая как прямые, так и косвенные последствия сбоев связи и устройств. В конечном счете, хотя QoS все еще важен, его можно значительно упростить. Четырех-шести очередей часто бывает достаточно для поддержки даже самых сложных приложений. Если требуется больше, некоторые системы теперь могут либо проектировать потоки трафика через сеть, либо активно управлять очередями, чтобы сбалансировать сложность управления очередями и поддержки приложений. Централизованный Control Plane - есть ли смысл? В 1990-х годах, чтобы решить многие из предполагаемых проблем с сетями с коммутацией пакетов, таких как сложные плоскости управления и управление QoS, исследователи начали работать над концепцией, называемой активной сетью. Общая идея состояла в том, что плоскость управления для сети с коммутацией пакетов может и должна быть отделена от устройств пересылки, чтобы позволить сети взаимодействовать с приложениями, запущенными поверх нее. Базовая концепция более четкого разделения плоскостей управления и данных в сетях с коммутацией пакетов была вновь рассмотрена при формировании рабочей группы по переадресации и разделению элементов управления (ForCES) в IETF. Эта рабочая группа в основном занималась созданием интерфейса, который приложения могли бы использовать для установки пересылки информации на сетевые устройства. Рабочая группа была в конечном итоге закрыта в 2015 году, и ее стандарты никогда не применялись широко. В 2006 году исследователи начали эксперимент с плоскостями управления в сетях с коммутацией пакетов без необходимости кодирования модификаций на самих устройствах- особая проблема, поскольку большинство этих устройств продавались поставщиками как неизменяемые устройства (или black boxes). Конечным результатом стал OpenFlow, стандартный интерфейс, который позволяет приложениям устанавливать записи непосредственно в таблицу пересылки (а не в таблицу маршрутизации). Исследовательский проект был выбран в качестве основной функции несколькими поставщиками, и широкий спектр контроллеров был создан поставщиками и проектами с открытым исходным кодом. Многие инженеры считали, что технология OpenFlow позволила бы реконструировать инженерные сети за счет централизации управления. В реальности, все будет по-иному-то, что, скорее всего, произойдет в мире сетей передачи данных: лучшие части централизованной control plane будут поглощены существующими системами, а полностью централизованная модель будет выброшена на обочину, оставив на своем пути измененные представления о том, как control plane взаимодействует с приложениями и сетью в целом.
img
Мы продолжаем знакомить вас с одной из самых распространенных IP-АТС – 3CX Phone System и в сегодняшней статье более детально рассмотрим ее особенности и возможности. По сути 3СХ Phone System – это программное обеспечение, готовый дистрибутив, который остается только установить на сервер и он станет полноценной IP-АТС, поддерживающей все сервисы VoIP. VoIP-система построенная на основе 3CX обычно включает в себя сервер, один или несколько терминалов, работающих по протоколу SIP, шлюз VoIP/PSTN или сервис VoIP провайдера. 3CX сервер выполняет те же функции, что и Proxy-сервер: SIP терминалы, будь то телефонные аппараты или софтфоны, регистрируются на сервере и когда они хотят инициировать вызов, то обращаются к серверу с запросом об установлении соединения. Proxy-сервер содержит базу данных всех телефонов/пользователей, которые прошли регистрацию, а также соответствующие SIP-адреса, по которым устанавливается внутренний вызов или же маршрутизируется внешний от VoIP/PSTN шлюза или провайдера VoIP. 3CX это Windows ориентированная система, то есть дистрибутив сервера может быть установлен только на рабочие станции с операционной системой Microsoft Windows, клиентом же может быть устройство с любой ОС (iOS, Android, Mac, Windows, Linux). Ниже приведены поддерживаемые версии для 3CX Phone System: - Windows 7 Professional (x86 & x64) - Windows 7 Ultimate (x86 & x64) - Windows 7 Enterprise (x86 & x64) - Windows 8 Pro (x86 & x64) - Windows 8 Enterprise (x86 & x64) - Windows 8.1 Pro (x86 & x64) - Windows 8.1 Enterprise (x86 & x64) - Windows 2008 Web Server (x64 only) - Windows 2008 (& R2) Foundation (x64 only) - Windows 2008 (& R2) Standard (x64 only) - Windows 2008 (& R2) Enterprise (x64 only) - Windows 2008 (& R2) Datacenter (x64 only) - Windows 2012 Foundation (max. 15 presence connections on IIS installations) - Windows 2012 Essentials (max. 25 presence connections on IIS installations) - Windows 2012 Standard - Windows 2012 Datacenter - Windows 2012 R2 Essentials (max. 25 presence connections on IIS installations) - Windows 2012 R2 Standard Кроме того 3CX Phone System можно устанавливать на виртуальную машину, что сокращает расходы на содержание аппаратной части. Ниже приведены поддерживаемые версии гипервизоров: - VMware ESX 5.X и выше - Microsoft HyperV 2008 R2 и выше Как в аппаратной так и в виртуальной реализации, производительность системы будет зависеть от следующих факторов: Как много одновременных вызовов будет проводиться? (Это также является основным критерием при выборе лицензии) Как много пользователей будет одновременно подключаться к серверу? Будет ли использоваться запись телефонных разговоров? Будут ли использоваться услуги VoIP провайдера? Осуществляется ли маршрутизация вызовов главным образом по очередям и IVR? 3CX Phone System имеет надежную утилиту, позволяющую сделать полнейший бэкап системы, включая ее конфигурацию и другие важные данные – Backup and Restore. Это необходимо главным образом при обновлении системы или же переносе сервисов на другой сервер или виртуальную машину. Имеется также возможность настройки бэкапирования 3CX по графику. То есть, в определенным момент времени, система будет делать полный бэкап текущего состояния и в случае нештатных ситуаций, запланированного обновления или переноса, можно будет заново развернуть все сервисы системы. 3CX Phone System поддерживает большое количество телефонных аппаратов и может автоматически определить, когда он подключается к серверу. Это существенно сокращает время настройки и введения в эксплуатацию нового оборудования. Список поддерживаемых устройств приведен ниже: Рекомендованные: Fanvil F52/F52P, C58/C58P, C62/C62P Fanvil X3/X3P, X5/X5G Htek UC802, UC803, UC804, UC806, UC840, UC842, UC860, UC862 snom 3 Series - 300, 320, 360, 370 snom 7 Series - 710, 715/D715, 720/D725, 760/D765 snom M300, M700 Dect (M300 Base, M700 Base) Yealink T19P/E2, T20P, T21P/E2, T22P, T26P, T28P Yealink T23P/G, T32G, T38G, T41P, T42G, T46G, T48G Yealink VP530 Руководство по настройке, Yealink DECT W52P Поддерживаемые: - Cisco 7940/ 7941/ 7960 /7961 Руководство по настройке - Cisco SPA 302, 303, 501G, 502G, 504G, 508G, 509G, 525G/G2 - Gigaset N510 IP PRO Руководство по настройке - Panasonic KX-TGP500B01 (DECT) - Polycom SoundPoint 320, 330 Polycom SoundPoint 321, 331, 335, 450, 550, 560, 650, 670 - Polycom SoundStation 5000, 6000, 7000 - snom MeetingPoint, snom PA1 – Public Announcement System, snom 8 Series - 820, 821, 870 Каждый SIP-терминал имеет инструкцию по настройке через веб-интерфейс, или же, может быть автоматически настроенным с помощью удаленного интерфейса 3CX Phone System с помощью функции Provisioning. За каждым SIP-терминалом (пользователем) закрепляется свой добавочный номер (Extension), по которому он будет доступен для звонка во внутренней сети или же из внешней с введением общего номера. Управление Extension’ами осуществляет Администратор системы. Администратор может редактировать правила для каждого Пользователя, разрешать или запрещать пользоваться некоторыми функциями системы, запускать сбор статистической информации с каждого Extension’а и другие: - Записывать все разговоры на данном Extension - Отправлять автоматическое письмо о пропущенном звонке - Скрыть Extension в адресной книге - Отключить Extension - Разрешить/запретить проводить внешние/внутренние вызовы - Разрешить проведение вызовов только после ввода PIN - Запретить регистрацию Extension вне сети И многое другое.
img
Сегментная маршрутизация (Segment Routing, SR) может или не может считаться туннельным решением, в зависимости от конкретной реализации и того, насколько строго вы хотите придерживаться определения туннелей, представленного ранее в статье "Виртуализация сетей". В этой статье будет рассмотрена основная концепция сегментной маршрутизации и две возможные схемы реализации: одна с использованием меток потока IPv6, а другая с использованием меток многопротокольной коммутации по меткам (Multiprotocol Label Switching -MPLS). Каждому устройству в сети с поддержкой SR присваивается уникальная метка. Стек меток, описывающий путь в терминах этих уникальных меток, может быть присоединен к любому пакету, заставляя его принимать определенный указанный путь. Рисунок 5 демонстрирует это. Каждый маршрутизатор на рисунке 5 объявляет IP-адрес в качестве идентификатора вместе с меткой, прикрепленной к этому IP-адресу. В SR метка, прикрепленная к идентификатору маршрутизатора, называется идентификатором сегмента узла (SID узла). Поскольку каждому маршрутизатору в сети присваивается уникальная метка, путь через сеть может быть описан с использованием только этих меток. Например: Если вы хотите перенаправить трафик от A к K по пути [B, E, F, H], вы можете описать этот путь с помощью меток [101,104,105,107]. Если вы хотите перенаправить трафик от A к K по пути [B, D, G, H], вы можете описать этот путь с помощью меток [101,103,106,107]. Набор меток, используемых для описания пути, называется стеком меток. Между D и H есть две связи; как это можно описать? В SR доступно несколько опций, в том числе: Стек меток может включать в себя только идентификаторы SID узла, описывающие путь через сеть в терминах маршрутизаторов, как показано ранее. В этом случае, если бы стек меток включал пару [103,107], D просто перенаправлял бы H в обычном режиме на основе информации локальной маршрутизации, поэтому он будет использовать любой локальный процесс, который он будет использовать для пересылки любого другого пакета, например, распределение нагрузки между двумя каналами для пересылки трафика с меткой SR. Стек меток может включать явную метку для загрузки общего ресурса по любому доступному набору путей, доступных в этой точке сети. H может назначить метку для каждого входящего интерфейса, а также SID узла, привязанный к его локальному идентификатору маршрутизатора. Эти метки будут объявляться так же, как SID узла, но, поскольку они описывают смежность, они называются SID смежности (adjacency). SID смежности уникален локально; он уникален для маршрутизатора, объявляющего сам SID смежности. Третий вид SID, префиксный SID, описывает конкретный достижимый пункт назначения (префикс) в сети. SID узла может быть реализован как SID префикса, привязанный к loopback адресу на каждом маршрутизаторе в сети. Не обязательно, чтобы весь путь описывался стеком меток. Например, стек меток [101,103] будет направлять трафик в B, затем в D, но затем позволит D использовать любой доступный путь для достижения IP-адреса назначения в K. Стек меток [105] обеспечит прохождение трафика через сеть к K будет проходить через F. Не имеет значения, как трафик достиг этой точки в сети и как он был перенаправлен после того, как достигнет F, если он проходит через F, будучи направленным к K. Каждая метка в стеке представляет собой сегмент. Пакеты переносятся от метки к метке через каждый сегмент в сети, чтобы быть транспортированными от головной части пути к хвостовой части пути. Маршрутизация сегментов с многопротокольной коммутацией меток MPLS был изобретен как способ сочетать преимущества асинхронного режима передачи (ATM), который больше не используется широко, с IP-коммутацией. В первые дни сетевой инженерии наборы микросхем, используемые для коммутации пакетов, были более ограничены в своих возможностях, чем сейчас. Многие из используемых наборов микросхем были Field Programmable Gate Arrays (FPGA), а не Application-Specific Integrated Circuits (ASIC), поэтому длина поля, в котором коммутировался пакет, напрямую коррелировала со скоростью, с которой пакет мог коммутироваться. Часто было проще переработать пакет или обработать его дважды, чем включать в заголовок много сложной информации, чтобы пакет можно было обработать один раз. Примечание: повторное использование пакетов по-прежнему часто используется во многих наборах микросхем для поддержки внутренних и внешних заголовков или даже для обработки различных частей более длинного и сложного заголовка пакета. MPLS инкапсулирует исходный пакет в заголовок MPLS, который затем используется для коммутации пакета по сети. На рисунке 6 показан заголовок MPLS. Весь заголовок состоит из 32 бит, метка 20 бит. Устройство пересылки MPLS может выполнять три операции: Текущая метка в заголовке MPLS может быть заменена другой меткой (SWAP). В пакет можно вставить новую метку (PUSH). Текущая метка может быть очищена, а метка под текущей меткой обработана (POP). Операции PUSH и POP переносятся непосредственно в SR: операция SWAP реализована в SR как CONTINUE, что означает, что текущая метка заменяется той же меткой (т. е. заголовок с меткой 100 будет заменен меткой 100), и обработка этого текущего сегмента будет продолжена. Проще всего понять процесс обработки на примере. Рисунок 7 демонстрирует это. На рисунке 7 каждому маршрутизатору присвоена глобально уникальная метка из глобального блока сегментной маршрутизации (Segment Routing Global Block -SRGB). Они объявляются через протокол маршрутизации или другую плоскость управления. Когда A получает пакет, предназначенный для N, он выбирает путь через сеть, используя некоторый локальный механизм. В этот момент: Чтобы начать процесс, A выполнит PUSH серии заголовков MPLS на пакете, которые описывают путь через сеть, [101,103,104,202,105,106,109, 110]. Когда A коммутирует пакет в сторону B, он вставит первую метку в стек, так как нет необходимости отправлять свою собственную метку в заголовке. Стек меток на канале [A,B] будет равен [103,104,202,105,106,109,110]. Когда B получает пакет, он проверяет следующую метку в стеке. Обнаружив, что метка равна 103, он выполнит POP этой метки и перешлет пакет в D. В этом случае стек меток SR выбрал один из двух возможных путей с равной стоимостью через сеть, так что это пример выбора SR конкретного пути. Стек меток на канале [B, D] будет [104,202,105,106,109,110]. Когда D получает пакет, верхняя метка в стеке будет 104. D выполнит POP этой метки и отправит пакет в E. Стек меток на канале [D, E] будет [202,105,106,109,110]. Когда E получает этот пакет, верхняя метка в стеке - 202. Это селектор смежности, поэтому он выбирает конкретный интерфейс, а не конкретного соседа. E выберет правильный интерфейс, нижний из двух интерфейсов на рисунке, и POP этой метки. Верхняя метка теперь представляет собой SID узла для F, который можно удалить, поскольку пакет передается на F. E переработает пакет и также откроет эту POP. Стек меток на канале [E, F] будет [106,109,110]. Когда пакет достигает F, следующей меткой в стеке будет 106. Эта метка указывает, что пакет должен быть передан в G. F выполнит POP метки и передаст ее G. Стек меток на канале [F, G] будет [109,110]. Когда пакет достигает G, следующая метка в стеке - 109, что указывает на то, что пакет должен быть направлен к L. Поскольку G не соединен напрямую с L, он может использовать локальный, свободный от петель (обычно самый короткий) путь к L. В этом случае есть два пути с равной стоимостью к L, поэтому G выполнит POP метки 109 и переадресовывает по одному из этих двух путей к L. В сегменте [G, L] стек меток равен [110]. Предположим, что G решает отправить пакет через K. Когда K получает пакет, он будет иметь стек меток, содержащий [110], который не является ни локальной меткой, ни смежным узлом. В этом случае метка должна оставаться прежней, или сегмент должен иметь CONTINUE. Чтобы реализовать это, K поменяет текущую метку 110 на другую копию той же метки, так что K будет пересылать трафик с той же меткой. На канале [K,L] стек меток будет равен [110]. Когда L принимает пакет, единственной оставшейся меткой будет 110, что указывает на то, что пакет должен быть направлен в M. L будет выполнена POP метки 109, эффективно удалив всю инкапсуляцию MPLS, и перенаправит пакет в M. Когда M получает пакет, он пересылает его, используя обычный IP-адрес, в конечный пункт назначения - N. Концепция стека меток в MPLS реализована в виде серии заголовков MPLS, уложенных друг на друга. Pop метки означает удаление самой верхней метки, push метки означает добавление нового заголовка MPLS в пакет, а continue означает замену метки идентичной меткой. Когда вы работаете со стопкой меток, понятия внутреннего и внешнего часто сбивают с толку, особенно, поскольку многие люди используют идею метки и заголовка как взаимозаменяемые. Возможно, лучший способ уменьшить путаницу - использовать термин "заголовок" для обозначения всего стека меток и исходного заголовка, переносимого внутри MPLS, при этом обращаясь к меткам как к отдельным меткам в стеке. Тогда внутренний заголовок будет исходным заголовком пакета, а внешний заголовок будет стеком меток. Внутренняя метка будет следующей меткой в стеке в любой момент прохождения пакета по сети, а внешняя метка будет меткой, по которой пакет фактически переключается. Хотя в приведенном здесь примере используются IP-пакеты внутри MPLS, протокол MPLS предназначен для передачи практически любого протокола, включая Ethernet. Таким образом, SR MPLS не ограничивается использованием для передачи одного типа трафика, но может также использоваться для передачи кадров Ethernet по сети на основе IP / MPLS. Это означает, что SR можно использовать для поддержки первого варианта использования, обсуждаемого в этой статье, - предоставления услуг Ethernet по IP-сети. MPLS - это туннель? Много написанных и произнесенных слов были пролиты на вопрос о том, является ли MPLS протоколом туннелирования. Здесь туннелирование определяется как действие, а не протокол; это намеренная попытка отделить идею протокола туннелирования от концепции туннелирования как действия, предпринимаемого при передаче трафика через сеть. В случае MPLS это означает, что он может быть, а может и не быть протоколом туннелирования, в зависимости от того, как он используется - как и любой другой протокол. Например, если у вас есть стек меток, помещенных поверх пакета с IP-заголовком, внешняя метка, на которую коммутируется пакет, не является (технически) туннелем. Этот внешний заголовок в сети MPLS фактически является локальным для сегмента, поэтому он либо выталкивается, либо отправляется на каждом маршрутизаторе. Это аналогично заголовку Ethernet для каждого канала. Однако внутренний заголовок переносится в пакете MPLS и, следовательно, технически туннелируется. Внутренняя метка не используется на текущем устройстве для коммутации пакета; он просто переносится как часть пакета. Это определение не идеально. Например, в случае MPLS SWAP или SR CONTINUE, используется ли метка для коммутации пакета или нет? Кроме того, в отличие от заголовка Ethernet в пакете, заголовок MPLS фактически используется при принятии решения о пересылке. Заголовок Ethernet, напротив, просто используется для достижения следующего перехода, а затем отбрасывается. Возможно, более подходящим сравнением было бы следующее: Заголовок MPLS подобен заголовку Ethernet, который используется для достижения перехода за пределы устройства, на которое маршрутизатор в настоящее время передает. Независимо от этих ограничений, этого определения обычно достаточно, чтобы мысленно управлять различием между туннелированием и не туннелированием в MPLS, а также в большинстве других протоколов.
ВЕСЕННИЕ СКИДКИ
40%
50%
60%
До конца акции: 30 дней 24 : 59 : 59