По вашему запросу ничего не найдено :(
Убедитесь, что запрос написан правильно, или посмотрите другие наши статьи:
img
Международная организации ISO представляет свою уникальную разработку под названием OSI, которой необходимо создать базу для разработки сетевых стандартов. Сетевая модель TCP/IP контролирует процесс межсетевого взаимодействия между компьютерными системами. Несмотря на это, модель OSI включает в себя 7 уровней сетевого взаимодействия, а модель TCP/IP - 4. Межсетевой экран Netfilter определяет протоколы Некоторые из них могут быть заданы только косвенно. Протоколы сетевого уровня и межсетевое экранирование Для формирования сквозной транспортной системы необходимо предоставить сетевой уровень (Network Layer). Он определяет маршрут передачи данных, преобразует логические адреса и имена в физические; в модели OSI (Таблица 2.1) данный уровень получает дейтаграммы, определяет маршрут и логическую адресацию, и направляет пакеты в канальный уровень, при этом сетевой уровень прибавляет свой заголовок. Протокол IP (Internet Protocol) Основным протоколом является IP, который имеет две версии: IPv4 и IPv6. Основные характеристики протокола IPv4: Размер адреса узла - 4 байта В заголовке есть поле TTL Нет гарантии при доставке, что будет правильная последовательность Пакетная передача данных. Если превысится максимальный размер для пакета, тогда обеспечивается его фрагментация. Версия состоящее из четырех бит поле, которое содержит в себе номер версии IP протокола (4 или 6). Длина заголовка - состоящее их 4х бит поле, которое определяет размер заголовка пакета. Тип обслуживания поле, которое состоит из 1 байта; на сегодняшний день не используется. Его заменяют на два других: DSCP, которое делит трафик на классы обслуживания, размер его составляет 6 бит. ECN - поле, состоящее из 2 бит, используется в случае, если есть перегрузка при передаче трафика. Смещение фрагмента используется в случае фрагментации пакета, поле которого равно 13 бит. Должно быть кратно 8. "Время жизни" поле, длиной в 1 байт, значение устанавливает создающий IP-пакет узел сети, поле, состоящее из 1 байта Транспорт поле, размером в один байт. Доп. данные заголовка поле, которое имеет произвольную длину в зависимости от содержимого и используется для спец. задач. Данные выравнивания. Данное поле используется для выравнивания заголовка пакета до 4 байт. IP уникальный адрес. Адреса протокола четвёртой версии имеют длину 4 байта, а шестой 16 байт. IP адреса делятся на классы (A, B, C). Рисунок 2.2. Сети, которые получаются в результате взаимодействия данных классов, различаются допустимым количеством возможных адресов сети. Для классов A, B и C адреса распределяются между идентификатором (номером) сети и идентификатором узла сети Протокол ICMP Протокол сетевого уровня ICMP передает транспортную и диагностическую информацию. Даже если атакующий компьютер посылает множество ICMP сообщений, из-за которых система примет его за 1 из машин. Тип поле, которое содержит в себе идентификатор типа ICMP-сообщения. Оно длиною в 1 байт. Код поле, размером в 1 байт. Включает в себя числовой идентификатор, Internet Header + 64 bits of Original Data Datagram включает в себе IP заголовок и 8 байт данных, которые могут быть частью TCP/UDP заголовка или нести информацию об ошибке. Типы ICMP-сообщений, есть во всех версиях ОС Альт, и они подразделяются на две большие категории. Протоколы транспортного уровня и межсетевое экранирование При ПТУ правильная последовательность прихода данных. Основными протоколами этого уровня являются TCP и UDP. Протокол UDP Основные характеристики протокола UDP приведены ниже. Простую структура, в отличие от TCP Сведения придут неповрежденными, потому что проверяется контрольная сумма Нет гарантии надёжной передачи данных и правильного порядка доставки UDP-пакетов Последнее утверждение нельзя рассматривать как отрицательное свойство UDP. Поддержка протокола не контролирует доставку пакетов, значит передача данных быстрее, в отличие от TCP. UDP-пакеты являются пользовательскими дейтаграммами и имеют точный размер заголовка 8 байт. Адрес порта источника - поле, размером 16 бит, с № порта. Адрес порта пункта назначения - поле, размером 16 бит, в котором есть адрес порта назначения. Длина - размером 16 бит. Оно предназначено для хранения всей длины дейтаграммы пользователя и заголовка данных. Контрольная сумма. Данная ячейка обнаруживается всею пользовательскую дейтаграмму. В UDP контрольная сумма состоит из псевдозаголовока, заголовка и данных, поступивших от прикладного уровня. Псевдозаголовок это часть заголовка IP-пакета, в котором дейтаграмма пользователя закодирована в поля, в которых находятся 0. Передающее устройство может вычисляет итоговую сумму за восемь шагов: Появляется псевдозаголовок в дейтаграмме. В поле КС по итогу ставится 0. Нужно посчитать число байтов. Если четное тогда в поле заполнения мы пишем 1 байт (все нули). Конечный результат - вычисление контрольной суммы и его удаление. Складываются все 16-битовых секций и дополняются 1. Дополнение результата. Данное число и есть контрольная сумма Убирается псевдозаголовка и всех дополнений. Передача UDP-сегмента к IP программному обеспечению для инкапсуляции. Приемник вычисляет контрольную сумму в течение 6 шагов: Прописывается псевдозаголовок к пользовательской дейтаграмме UDP. Если надо, то дополняется заполнение. Все биты делятся на 16-битовые секции. Складывается все 16-битовых секций и дополняются 1. Дополнение результата. Когда результат = нулю, убирается псевдозаголовок и дополнения, и получает UDP-дейтаграмму только семь б. Однако, если программа выдает иной рез., пользовательская дейтаграмма удаляется. Чтобы передать данные - инкапсулируется пакет. В хосте пункта назначения биты декодируются и отправляются к звену данных. Последний использует заголовок для проверки данных, заголовок и окончание убираются, если все правильно, а дейтаграмма передается IP. ПО делает свою проверку. Когда будет все правильно, заголовок убирается, и пользовательская дейтаграмма передается с адресами передатчика и приемника. UDP считает контрольную сумму для проверки . Если и в этот раз все верно, тогда опять заголовок убирается, и прикладные данные передаются процессу. Протокол TCP Транспортный адрес заголовка IP-сегмента равен 6 (Таблица 2.2). Протокол TCP совсем другой, в отличие от протокола UDP. UDP добавляет свой собственный адрес к данным, которые являются дейтаграммой, и прибавляет ее IP для передачи. TCP образует виртуальное соединение между хостами, что разрешает передавать и получать данные как поток байтов. Также добавляется заголовок перед передачей пакету СУ. Порт источника и порт приемника поля размером по 16 бит. В нем есть номер порта службы источника. Номер в последовательности поле размером в 32 бита, содержит в себе номер кадра TCP-пакета в последовательности. Номер подтверждения поле длиной в 32 бита, индикатор успешно принятых предыдущих данных. Смещение данных поле длиной в 4 бита (длина заголовка + смещение расположения данных пакета. Биты управления поле длиной 6 бит, содержащее в себе различные флаги управления. Размер окна поле размером 16 бит, содержит в себе размер данных в байтах, их принимает тот, кто отправил данный пакет. Макс.значение размера окна - 40967байт. Контр. сумма поле размером 16 бит, содержит в себе значение всего TCP-сегмента Указатель поле размером 16 бит, которое используется, когда устанавливается флаг URG. Индикатор количества пакетов особой важности. Опции - поле произв. длины, размер которого зависит от данных находящихся в нём. Чтобы повысить пропускную функцию канала, необходим способ "скользящего окна". Необходимы только поля заголовка TCP-сегмента: "Window". Вместе с данным полем можно отправлять максимальное количество байт данных. Классификация межсетевых экранов Межсетевые экраны не позволяют проникнуть несанкционированным путем, даже если будет использоваться незащищенныеместа, которые есть в протоколах ТСР/IP. Нынешние МЭ управляют потоком сетевого трафика между сетями с различными требованиями к безопасности. Есть несколько типов МЭ. Чтобы их сравнить, нужно с точностью указать все уровни модели OSI, которые он может просчитать. МЭ работают на всех уровнях модели OSI. Пакетные фильтры Изначально сделанный тип МЭ и есть пакетный фильтр. ПФ - часть маршрутизаторов, которые могут быть допущены к разным сист.адресам. ПФ читают информацию заголовков пакетов 3-го и 4-го уровней. ПФ применяется в таких разделай сетевой инфраструктуры, как: пограничные маршрутизаторы; ос; персональные МЭ. Пограничные роутеры Главным приоритетом ПФ является скорость. Также пф ограничивать доступ при DoS-атаки. Поэтому данные пф встроены в большинство роутеров. Преимущества пф: Пф доступен для всех, так как остается в целостности ТСР-соединение. Недостатки пакетных фильтров: Пфпропускают данные с высших уровней МЭ имеет доступ не ко всей информации Большинство пф не аутентифицируют пользователя. Для исходящего и входящего трафика происходит фильтрация. МЭ анализирующие состояние сессии Такие МЭ являются пакетными фильтрами, которые считывают сохраняемый пакет 4-го уровня OSI. Плюсы МЭ четвертого уровня: Информацию могут узнать только установленные соединения Пф доступен для всех, остается в целостности ТСР-соединение Прокси-сервер прикладного уровня Если применять МЭ ПУ, тогда нам не потребуется устройство, чтобы выполнить маршрутизацию. Прокси-сервер, анализирующий точный протокол ПУ, называется агентом прокси. Такой МЭ имеют много преимуществ. Плюсы прокси-сервера ПУ: Прокси требует распознавание пользователя МЭ ПУ проанализирует весь сетевой пакет. Прокси ПУ создают детальные логи. Минусы прокси-сервера ПУ: МЭ использует больше времени при работе с пакетами рикладные прокси работают не со всеми сетевыми приложениями и протоколами Выделенные прокси-серверы Эти прокси-серверы считывают трафик определенного прикладного протокола и не анализируют его полностью. Прокси-серверы нужны для сканирования web и e-mail содержимого: отсеивание Java-приложений; отсеивание управлений ActiveX; отсеивание JavaScript; уничтожение вирусов; блокирование команд, определенных для приложений и пользователя, вместе с блокирование нескольких типов содержимого для точных пользователей.
img
В последнее время DevOps является одним из самых громких словечек в мире технологий, поскольку предлагает организации огромное количество преимуществ для сокращения жизненного цикла разработки программного обеспечения. Что такое DevOps? Нет единого определения или правильного ответа на вопрос «Что такое DevOps». DevOps (акроним от англ. development и operations) не является инструментом, технологией или какой-либо структурой; это больше философия и концепция. Это набор практик, сочетающий разработку программного обеспечения (Dev) и ИТ-операции (Ops), который помогает сократить жизненный цикл разработки системы и обеспечить непрерывную интеграцию и поставку с высоким качеством программного обеспечения. Подробно про DevOps можно прочитать в нашей статье ”DevOps – это философия будущего: кто, что и как?” и в нашем разделе про него. Преимущества DevOps Улучшенное сотрудничество и общение Ускоренная доставка программного обеспечения или продуктов Постоянное снижение затрат Улучшенный процесс Ускоренное решение проблем В мире DevOps нет ни одного волшебного инструмента, который бы соответствовал всем потребностям. Речь идет о выборе правильного инструмента, который соответствует потребностям организации. Давайте узнаем о них. Что такое DevOps, что нужно знать и сколько получают DevOps - специалисты? Инструменты DevOps Планирование и сотрудничество JIRA JIRA - это один из популярных инструментов управления проектами, разработанный Atlassian, который используется для отслеживания проблем, ошибок и проектов. Это позволяет пользователю отслеживать проект и выпускать статус. Его можно легко интегрировать с другими продуктами Atlassian, такими как Bitbucket, в дополнение к другим инструментам DevOps, таким как Jenkins. Slack Slack - это бесплатный инструмент для совместной работы на основе облака, для групповой коммуникации и совместной работе в одном месте. Этот инструмент также можно использовать для обмена документами и другой информацией среди членов команды. Это также может быть легко интегрировано с другими инструментами, такими как GIT, Jenkins, JIRA и так далее. А еще Slack можно интегрировать с Asterisk Zoom Zoom - это платформа для веб-конференций и мгновенного обмена экранами. Вы можете общаться со своей командой через аудио или видео. Неважно, насколько велика ваша команда, Zoom способен принять до 1000 получателей на онлайн-встречу. Clarizen Clarizen - это программное обеспечение для совместной работы и управления проектами, которое помогает отслеживать проблемы, управлять задачами и управлять портфелем проектов. Clarizen легко настроить, и он имеет удобный интерактивный интерфейс пользователя. Asana Asana - это мобильное и веб-приложение, которое помогает командам эффективно и результативно организовывать, отслеживать и управлять своей работой. Он используется для отслеживания ежедневных командных задач и поддержки обмена сообщениями и общения в организации. Управление исходным кодом SVN SVN - это централизованный инструмент контроля версий и исходного кода, разработанный Apache. SVN помогает разработчикам поддерживать разные версии исходного кода и вести полную историю всех изменений. Git Git - это распределенная система контроля версий, которая нацелена на скорость, целостность данных, поддержку распределенных, нелинейных рабочих процессов. Помимо управления исходным кодом, его также можно использовать для отслеживания изменений в любом наборе файлов. Подробнее про Git Bitbucket Bitbucket - это веб-хостинговая платформа, разработанная Atlassian. Bitbucket также предлагает эффективную систему проверки кода и отслеживает все изменения в коде. Его можно легко интегрировать с другими инструментами DevOps, такими как Jenkins, Bamboo. GitHub GitHub - это платформа для размещения кода, предназначенная для контроля версий и совместной работы. Он предлагает все функции распределенного контроля версий и управления исходным кодом (SCM) в Git в дополнение к своим функциям. GitHub предлагает функции контроля доступа и совместной работы, такие как отслеживание ошибок, создание функций и запросов, управление задачами и так далее. Инструменты для сборки Ant Apache Ant - это инструмент для сборки и развертывания на основе Java с открытым исходным кодом. Он поддерживает формат файла XML. Он имеет несколько встроенных задач, позволяющих нам компилировать, собирать, тестировать и запускать приложения Java. Maven Maven - это инструмент для автоматизации сборки, который в основном используется для Java-проектов. Он содержит файл XML, в котором описывается создаваемый программный проект, его зависимости от других внешних компонентов и модулей, последовательность сборки, каталоги и другие необходимые подключаемые модули. Подробно про Maven Grunt Grunt - это инструмент командной строки Javascript, который помогает создавать приложения и помогает разработчикам автоматизировать повторяющиеся задачи, такие как компиляция, модульное тестирование, кодирование кода, проверка и так далее. Это хорошая альтернатива для таких инструментов, как Make или Ant. Gradle Gradle - это система автоматизации сборки с открытым исходным кодом, основанная на концепциях Apache Maven и Apache Ant. Он поддерживает Groovy правильный язык программирования вместо XML-файла конфигурации. Он предлагает поддержку добавочных сборок, автоматически определяя, какие части сборки обновлены. Управление конфигурацией Puppet Puppet - это инструмент управления конфигурацией с открытым исходным кодом, используемый для настройки, развертывания и управления многочисленными серверами. Этот инструмент поддерживает концепцию инфраструктуры как кода и написан на Ruby DSL. Он также поддерживает динамическое масштабирование машин по мере необходимости. Подробно про Puppet, его плюсы и минусы и примеры использования Chef Chef - это инструмент управления конфигурацией с открытым исходным кодом, разработанный Opscode с использованием Ruby для управления инфраструктурой на виртуальных или физических машинах. Он также помогает в управлении сложной инфраструктурой на виртуальных, физических и облачных машинах. Подробно про Chef и его плюсы и минусы Ansible Ansible - это инструмент для управления ИТ-конфигурацией с открытым исходным кодом, обеспечения программного обеспечения, оркестровки и развертывания приложений. Это простой, но мощный инструмент для автоматизации простых и сложных многоуровневых ИТ-приложений. Подробно про Ansible и его плюсы и минусы SaltStack SaltStack - это программное обеспечение с открытым исходным кодом, написанное на python и использующее push-модель для выполнения команд по протоколу SSH. Он предлагает поддержку как горизонтального, так и вертикального масштабирования. Он поддерживает шаблоны YAML для записи любых скриптов. Terraform Terraform - это инструмент с открытым исходным кодом для безопасного, эффективного построения, изменения, развертывания и управления версиями инфраструктуры. Он используется для управления существующими и популярными поставщиками услуг, а также для создания собственных решений. Это помогает в определении инфраструктуры в конфиге или коде и позволит пользователю легко перестраивать или изменять и отслеживать изменения в инфраструктуре. Vagrant Vagrant является одним из популярных инструментов для создания и управления виртуальными машинами (VM). Он имеет простой в использовании и настраиваемый рабочий процесс, ориентированный на автоматизацию. Это помогает сократить время настройки среды разработки, увеличивает производственный паритет. Подробно про Vagrant Непрерывная интеграция Jenkins Jenkins является одним из самых популярных инструментов DevOps с открытым исходным кодом для поддержки непрерывной интеграции и доставки через DevOps. Это позволяет осуществлять непрерывную интеграцию и непрерывную доставку проектов независимо от того, над чем работают пользователи платформы, с помощью различных конвейеров сборки и развертывания. Jenkins можно интегрировать с несколькими инструментами тестирования и развертывания. Подробно про Jenkins Travis CI Travis CI - это облачная распределенная платформа непрерывной интеграции, используемая для создания и тестирования проектов, размещенных на GitHub и Bitbucket. Это настраивается путем добавления файла YAML. Его можно протестировать бесплатно для проектов с открытым исходным кодом и на платной основе для частного проекта. Bamboo Bamboo является одним из популярных продуктов, разработанных Atlassian для поддержки непрерывной непрерывной интеграции. Его большая часть функциональности предварительно встроена, что означает, что нам не нужно загружать различные плагины, такие как Jenkins. Он также поддерживает плавную интеграцию с другими продуктами Atlassian, такими как JIRA и Bitbucket. Hudson Hudson - это свободное программное обеспечение, написанное на JAVA и работающее в контейнере сервлетов, например, GlassFish и Apache Tomcat. Он обеспечивает возможность запуска вашего пакета автоматизации с любыми изменениями в соответствующей системе управления исходными кодами, такими как GIT, SVN и так далее. Он также обеспечивает поддержку всех базовых проектов maven и Java. TeamCity TeamCity - это непрерывная интеграция на основе сервера, которая создает инструмент управления, разработанный JetBrains. Он имеет простой и удобный пользовательский интерфейс (UI) и обеспечивает прогресс сборки, детализирует информацию о сборке и хронологическую информацию для всех конфигураций и проектов. CircleCI CircleCI доступен как в виде облачных, так и локальных решений для непрерывной интеграции. Запускать и поддерживать легковесные и легкочитаемые конфигурации YAML просто и быстро. Непрерывная безопасность Snyk Интегрируйте Snyk в жизненный цикл разработки, чтобы автоматически находить и исправлять уязвимости безопасности с открытым исходным кодом. Он поддерживает JS, .Net, PHP, NPM, jQuery, Python, Java и так далее, и может быть интегрирован в кодирование, управление кодом, CI/CI, контейнер и развертывание. Snyk имеет самую большую базу уязвимостей с открытым исходным кодом Netsparker Netsparker автоматически сканирует ваше приложение на наличие уязвимостей и предоставляет действенные секретные отчеты, чтобы вы могли действовать в соответствии с приоритетом. Сценарий безопасности DevOps заключается в проверке нового коммита и сообщении об ошибке непосредственно в систему отслеживания, например, Jira или GitHub, и повторном сканировании после исправления разработчиком. Вы видите, что это интегрируется на каждом этапе SDLC (Software Development Life Cycle - жизненный цикл разработки). Тестирование Selenium Selenium - самый популярный инструмент для тестирования с открытым исходным кодом. Он поддерживает автоматизацию тестирования в различных браузерах и операционных системах. Его легко интегрировать с инструментами управления тестированием, такими как ALM, JIRA, а также с другими инструментами DevOps, такими как Jenkins, Teamcity, Bamboo и так далее. TestNG TestNG - это среда тестирования с открытым исходным кодом, разработанная и вдохновленная Junit и Nunit. Ее можно легко интегрировать с веб-драйвером selenium для настройки и запуска сценариев автоматизации тестирования. Она также генерирует различные отчеты о тестировании, такие как HTML или XSLT. JUnit JUnit - это инфраструктура модульного тестирования с открытым исходным кодом, используемая разработчиками для написания и запуска повторяющихся тестов. JUnit поддерживает различные аннотации тестов, с помощью которых любой разработчик может написать цельный тестовый блок. Его легко интегрировать с другими инструментами DevOps, такими как Jenkins, GIT и так далее. Мониторинг Nagios Nagios - это открытый исходный код и один из самых популярных инструментов для непрерывного мониторинга. Nagios помогает отслеживать системы, приложения, услуги и бизнес-процессы в культуре DevOps. Он предупреждает пользователей, когда что-то не так с инфраструктурой, и предупреждает их, когда проблема решена. Подробно про Nagios Grafana Grafana - это аналитическая платформа с открытым исходным кодом, позволяющая отслеживать все показатели инфраструктуры, приложений и аппаратных устройств. Вы можете визуализировать данные, создавать и совместно использовать панель инструментов, настраивать оповещения. Вы можете получать данные из более чем 30 источников, включая Prometheus, InfluxDB, Elasticsearch, AWS CloudWatch и так далее. Sensu Sensu - это инструмент для мониторинга с открытым исходным кодом, написанный на Ruby, который помогает просто и эффективно контролировать серверы, сервисы, приложения, облачную инфраструктуру. Его легко масштабировать, чтобы вы могли легко отслеживать тысячи серверов. New Relic New Relic - это программный аналитический продукт для мониторинга производительности приложений (APM - Application Performance Monitoring), который предоставляет в реальном времени трендовые данные о производительности веб-приложений и уровне удовлетворенности, которое испытывают конечные пользователи. Он поддерживает сквозную трассировку транзакций и отображает их с помощью различных цветовых диаграмм, графиков и отчетов. Datadog Datadog - это инструментальный инструмент метрики сервера. Он поддерживает интеграцию с различными веб-серверами, приложениями и облачными серверами. Его сервисная панель предоставляет различные графики мониторинга в реальном времени по всей инфраструктуре. ELK ELK - это коллекция из трех продуктов с открытым исходным кодом - Elasticsearch, Logstash и Kibana, которые разрабатываются, управляются и поддерживаются компанией Elastic. Он позволяет пользователям получать данные из любого источника в любом формате, а затем искать, анализировать и визуализировать эти данные в режиме реального времени. Облачный хостинг AWS AWS - это веб-хостинговая платформа, созданная Amazon, которая предлагает гибкие, надежные, масштабируемые, простые в использовании, масштабируемые и экономически эффективные решения. Используя эту облачную платформу, нам не нужно беспокоиться о настройке ИТ-инфраструктуры, которая обычно занимает достаточно много времени. Azure Azure - это платформа облачных вычислений, разработанная Microsoft для создания, развертывания, тестирования и управления приложениями и службами через глобальную сеть своих центров обработки данных. Службы, предоставляемые Microsoft Azure, представлены в форме PaaS (платформа как услуга) и IaaS (инфраструктура как услуга). GCP Google Cloud - это полный набор услуг облачного хостинга и вычислений, предлагаемых Google. Он поддерживает широкий спектр услуг для вычислений, хранения и разработки приложений, которые используют Google Hardware. Контейнеры и оркестровка Docker Docker - это инструмент для создания, развертывания и запуска приложений с использованием контейнеров. Этот контейнер позволяет разработчику упаковывать приложение со всеми необходимыми ему компонентами и подкомпонентами, такими как библиотеки и другие зависимости, и отправлять все это в виде одного пакета. Подробно про Docker, Docker Compose и Docker Swarm Kubernetes Kubernetes - это система контейнерной оркестрации с открытым исходным кодом, изначально разработанная Google, и в настоящее время она поддерживается Cloud Native Computing Foundation. Он используется для автоматизации развертывания, масштабирования и управления приложениями. Он работает с другими инструментами-контейнерами, включая Docker. Подробно про Kubernetes и сравнение Kubernetes c Docker
img
Существует новая тенденция для стандартов проектирования топологии сети - создание быстрой, предсказуемой, масштабируемой и эффективной коммуникационной архитектуры в среде центра обработки данных. Речь идет о топологии Leaf-Spine, о которой мы поговорим в этой статье. Почему Leaf-Spine? Учитывая повышенный фокус на массовые передачи данных и мгновенные перемещения данных в сети, стареющие трехуровневые конструкции в центрах обработки данных заменяются так называемым дизайном Leaf-Spine. Архитектура Leaf-Spine адаптируется к постоянно меняющимся потребностям компаний в отраслях big data с развивающимися центрами обработки данных. Другая модель Традиционная трехуровневая модель была разработана для использования в общих сетях. Архитектура состоит из Core маршрутизаторов, Aggregation маршрутизаторов (иногда этот уровень называется Distribution) и Access коммутаторов. Эти устройства взаимосвязаны путями для резервирования, которые могут создавать петли в сети. Частью дизайна является протокол Spanning Tree (STP) , предотвращающий петли, однако в этом случае деактивируется все, кроме основного маршрута и резервный путь используется только тогда, когда основной маршрут испытывает перебои в работе. Введение новой модели С конфигурацией Leaf-Spine все устройства имеют точно такое же количество сегментов и имеют предсказуемую и согласованную задержку информации. Это возможно из-за новой конструкции топологии, которая имеет только два слоя: слой «Leaf» и «Spine». Слой Leaf состоит из access коммутаторов, которые подключаются к таким устройствам как сервера, фаерволы, балансировщики нагрузки и пограничные маршрутизаторы. Уровень Spine, который состоит из коммутаторов, выполняющих маршрутизацию, является основой сети, где каждый коммутатор Leaf взаимосвязан с каждым коммутатором Spine. Чтобы обеспечить предсказуемое расстояние между устройствами в этом двухуровневом дизайне, динамическая маршрутизация уровня 3 используется для соединения уровней. Она позволяет определить наилучший маршрут и настроить его с учетом изменения сети. Этот тип сети предназначен для архитектур центров обработки данных, ориентированных на сетевой трафик типа «Восток-Запад» (East-West). Такой трафик содержит данные, предназначенные для перемещения внутри самого центра обработки данных, а не наружу в другую сеть. Этот новый подход является решением внутренних ограничений Spanning Tree с возможностью использования других сетевых протоколов и методологий для достижения динамической сети. Преимущества Leaf-Spine В Leaf-Spine сеть использует маршрутизацию 3го уровня. Все маршруты сконфигурированы в активном состоянии с использованием протокола равноудаленных маршрутов Equal-Cost Multipathing (ECMP) . Это позволяет использовать все соединения одновременно, сохраняя при этом стабильность и избегая циклов в сети. При использовании традиционных протоколов коммутации уровня 2, таких как Spanning Tree в трехуровневых сетях, он должен быть настроен на всех устройствах правильно, и все допущения, которые использует протокол Spanning Tree Protocol (STP), должны быть приняты во внимание (одна из простых ошибок, когда конфигурация STP связана с неправильным назначением приоритетов устройства, что может привести к неэффективной настройке пути). Удаление STP между уровнями Access и Aggregation приводит к гораздо более стабильной среде. Другим преимуществом является простота добавления дополнительного оборудования и емкости. Когда происходит ситуация перегрузки линков, которая называется oversubscription (что означает, что генерируется больше трафика, чем может быть агрегировано на активный линк за один раз) возможность расширять пропускную способность проста - может быть добавлен дополнительный Spine коммутатор и входящие линии могут быть расширены на каждый Leaf коммутатор, что приведет к добавлению полосы пропускания между уровнями и уменьшению перегрузки. Когда емкость порта устройства становится проблемой, можно добавить новый Leaf коммутатор. Простота расширения оптимизирует процесс ИТ-отдела по масштабированию сети без изменения или прерывания работы протоколов коммутации уровня 2. Недостатки Leaf-Spine Однако этот подход имеет свои недостатки. Самый заметный из них – увеличение количества проводов в этой схеме, из-за соединения каждого Leaf и Spine устройства. А при увеличении новых коммутаторов на обоих уровнях эта проблема будет расти. Из-за этого нужно тщательно планировать физическое расположение устройств. Другим основным недостатком является использование маршрутизации уровня 3.Ее использование не дает возможность развертывать VLAN’ы в сети. В сети Leaf-Spine они локализованы на каждом коммутаторе отдельно – VLAN на Leaf сегменте недоступен другим Leaf устройствам. Это может создать проблемы мобильности гостевой виртуальной машины в центре обработки данных. Применение Leaf-Spine Веб-приложения со статичным расположением сервера получат преимущество от реализации Leaf-Spine. Использование маршрутизации уровня 3 между уровнями архитектуры не препятствует приложениям веб-масштаба, поскольку они не требуют мобильности сервера. Удаление протокола Spanning Tree Protocol приводит к более стабильной и надежной работе сети потоков трафика East-West. Также улучшена масштабируемость архитектуры. Корпоративные приложения, использующие мобильные виртуальные машины (например, vMotion), создают проблему, когда сервер нуждается в обслуживании внутри центра обработки данных, из-за маршрутизации уровня 3 и отсутствие VLAN. Чтобы обойти эту проблему, можно использовать такое решение, как Software Defined Networking (SDN) , которое создает виртуальный уровень 2 поверх сети Leaf-Spine. Это позволяет серверам беспрепятственно перемещаться внутри центра обработки данных. Другие решения В качестве альтернативы маршрутизации уровня 3 топология Leaf-and-Spine может использовать другие протоколы, такие как Transparent Interconnection of Lots of Links (TRILL) или Shortest Path Bridging (SPB) для достижения аналогичной функциональности. Это достигается за счет сокращения использования Spanning Tree и включения ECMP уровня 2, а также поддержки развертывания VLAN между Leaf коммутаторами. Итог Сети Leaf-Spine предлагают множество уникальных преимуществ по сравнению с традиционной трехуровневой моделью. Использование маршрутизации 3-го уровня с использованием ECMP улучшает общую доступную пропускную способность, используя все доступные линии. Благодаря легко адаптируемым конфигурациям и дизайну, Leaf-Spine улучшает управление масштабируемостью и контролем над перегрузкой линий. Устранение протокола Spanning Tree Protocol приводит к значительному повышению стабильности сети. Используя новые инструменты и имея способность преодолевать присущие ограничения другими решениям, такими как SDN, среды Leaf-Spine позволяют ИТ-отделам и центрам обработки данных процветать при удовлетворении всех потребностей и потребностей бизнеса.
ВЕСЕННИЕ СКИДКИ
40%
50%
60%
До конца акции: 30 дней 24 : 59 : 59