По вашему запросу ничего не найдено :(
Убедитесь, что запрос написан правильно, или посмотрите другие наши статьи:
img
В этой статье мы разберем принцип работы и настройку IP-телефонии по Ethernet сетям. В мире IP-телефонии телефоны используют стандартные порты Ethernet для подключения к сети, и поэтому для отправки и приема голосового трафика, передаваемого посредством IP-пакетов, они используют стек протоколов TCP/IP. Чтобы это работало, необходимо, чтобы порт коммутатора работал как порт доступа, но, в то же время, этот порт работал как магистраль для передачи другого трафика. Принцип работы VLAN для передачи данных и голоса До IP-телефонии компьютер и телефон располагались на одном рабочем месте. Телефон подключался по специальному телефонному кабелю (телефонный UTP-кабель). Причем этот телефон был подключен к специальному голосовому устройству (часто называемому voice switch или частной телефонной станцией private branch exchange [PBX]). ПК, конечно же, подключался с помощью Ethernet кабеля (UTP витой пары) к обычному коммутатору локальной сети, который находился в коммутационном шкафу - иногда в том же коммутационном шкафу, что и голосовой коммутатор (voice switch). На рисунке показана эта идея. Предположим, что у нас есть три виртуальные сети VLAN1, VLAN2 и VLAN3. Виртуальные сети VLAN 1 и VLAN 3 содержат по две пары ПК, которые подключаются к коммутатору через отдельные интерфейсы. Для сети VLAN 1 отведены четыре интерфейса "fa0/12", "fa0/11", "fa0/22", и "fa0/21" соответственно. Аналогично, 4 интерфейса отведены для сети VLAN 3 - "fa0/15", "fa0/16", "fa0/23", и "fa0/24" соответственно. Сеть VLAN 2 состоит из двух ПК, которые подключаются к коммутатору через интерфейсы "Fa0/13" и " Fa0/14". Два коммутатора соединены между собой через магистраль, и интерфейсы "Gi0/1" и "Gi0/2". Термин IP-телефония относится к отрасли сети, в которой телефоны используют IP-пакеты для передачи и приема голоса, представленного битами в части данных IP-пакета. Телефоны подключаются к сети, как и большинство других устройств конечных пользователей, используя либо кабель Ethernet, либо Wi-Fi. Новые IP-телефоны не подключаются непосредственно по кабелю к голосовому коммутатору, а подключаются к стандартной IP-сети с помощью кабеля Ethernet и порта Ethernet, встроенного в телефон. После чего телефоны связываются по IP-сети с программным обеспечением, которое заменило операции вызова и другие функции АТС. Переход от использования стационарных телефонов, которые работали (некоторые работают по сей день) с использованием телефонных кабелей к новым IP-телефонам (которые нуждались в UTP-кабелях, поддерживающих Ethernet) вызвал некоторые проблемы в офисах. В частности: Старые, не IP-телефоны, использовали категорию UTP-кабелей, у которых частотный диапазон не поддерживал скорость передачи данных в 100-Mbps или 1000-Mbps. В большинстве офисов был один кабель UTP, идущий от коммутационного шкафа к каждому столу. Теперь же на два устройства (ПК и IP-телефон) требовалось два кабеля от рабочего стола к коммутационному шкафу. Прокладка нового кабеля к каждому рабочему месту вызовет дополнительные финансовые затраты, и плюс потребуется больше портов коммутатора. Чтобы решить эту проблему, компания Cisco встроила небольшие трехпортовые коммутаторы в каждый телефон. IP-телефоны включают в себя небольшой коммутатор локальной сети, расположенный в нижней части телефона. На рисунке показаны основные кабели, причем кабель коммутационного шкафа подключается напрямую к одному физическому порту встроенного коммутатора телефона, ПК подключается патч-кордом к другому физическому порту телефона, а внутренний процессор телефона подсоединяется к внутреннему порту коммутатора телефона. Компании, использующие IP-телефонию, теперь могут подключать два устройства к одному порту доступа. Кроме того, лучшие практики Cisco, для проектирования IP-телефонии, советуют поместить телефоны в один VLAN, а ПК в другой VLAN. Чтобы это работало, порт коммутатора действует частично в режиме канала доступа (для трафика ПК) и частично как магистраль (для трафика телефона). Особенности настройки VLAN’ов на этом порту: VLAN передачи данных: та же идея настройки, что и VLAN доступа на access порту, но определенная как VLAN на этом канале для пересылки трафика для устройства, подключенного к телефону на рабочем месте (обычно ПК пользователя). Voice VLAN: VLAN для пересылки трафика телефона. Трафик в этой VLAN обычно помечается заголовком 802.1 Q. На рисунке изображена типичная конструкция локальной сети. Имеется коммутатор, подключенный к двум последовательным уровням сетей, VLAN 11 и VLAN 10, где сеть VLAN 11- Voice VLAN, содержащая 4 IP-телефона, и сеть VLAN 10 - Data VLAN, состоящая из 4 ПК. Настройка и проверка работы Data и Voice VLAN Для настройки порта коммутатора, который сможет пропускать голосовой трафик и информационные данные, необходимо применить всего несколько простых команд. Однако разобраться в командах, позволяющих просмотреть настройки режима работы порта, непросто, так как порт действует как access порт во многих отношениях. Ниже показан пример настройки. В данном примере используются четыре порта коммутатора F0/1F0/4, которые имеют базовые настройки по умолчанию. Затем добавляются соответствующие VLAN’ы: VLAN 10 Data Vlan, VLAN 11- Voice Vlan. Далее все четыре порта настраиваются как порты доступа и определяется VLAN доступа (Vlan 10 Date Vlan). В конце настройки определяем на порт VLAN для передачи голосовых данных (Vlan 11- Voice Vlan). Данный пример иллюстрирует работу сети, изображенную на рисунке: При проверке состояния порта коммутатора, из примера выше, увидим разницу в отображаемой информации выходных данных, по сравнению с настройками по умолчанию порта доступа и магистрального порта. Например, команда show interfaces switchport показывает подробные сведения о работе интерфейса, включая сведения о портах доступа. В примере 2 отображены эти детали (подчеркнуты) для порта F0/4 после добавления настроек из первого примера. Первые три выделенные строки в выходных данных отображают детали настройки, соответствующие любому порту доступа. Команда switchport mode access переводит порт в режим порта доступа. Далее, как показано в третьей выделенной строке, команда switchport access vlan 10 определила режим доступа VLAN. Четвертая выделенная строка показывает новый фрагмент информации: идентификатор Voice VLAN, активированная командой switchport voice vlan 11. Эта небольшая строка является единственной информацией об изменении состояния порта.
img
Router-on-a-stick (роутер на палочке) - это термин, часто используемый для описания схемы, состоящей из маршрутизатора и коммутатора, которые соединены с использованием одного канала Ethernet, настроенного как 802.1Q транк. Стандарт 802.1Q используется для тегирования трафика, для передачи информации о принадлежности к VLAN. В этой схеме на коммутаторе настроено несколько VLAN и маршрутизатор выполняет всю маршрутизацию между различными сетями или VLAN (Inter-VLAN routing). /p> Хотя некоторые считают, что термин «маршрутизатор на палочке» звучит немного глупо, это очень популярный термин, который широко используется в сетях, где нет коммутатора 3-го уровня. Также такую схему иногда называют “леденец” – lollypop. Находите некоторое сходство? Пример Наш пример основан на сценарии, с которым вы, скорее всего, столкнетесь при работе с сетями VoIP. Поскольку реализации VoIP требуют разделения сети передачи данных и сети голоса для маршрутизации пакетов между ними, вам необходим либо коммутатор 3-го уровня, либо маршрутизатор. Эта конфигурация обеспечивает доступность и стабильность VoIP, особенно в часы пик трафика в вашей сети. Пакеты, передающиеся между VLAN маршрутизируются через один роутер, подключенный к коммутатору, используя один физический порт, настроенный как транк на обоих концах (коммутатор и маршрутизатор). Этот пример покажет вам, как настроить маршрутизатор и коммутатор Cisco для создания между ними 802.1Q транка и маршрутизации пакетов между вашими VLAN. Шаг 1 – Настройка коммутатора Первым шагом является создание необходимых двух VLAN на нашем коммутаторе Cisco и настройка их с IP-адресом. Поскольку все коммутаторы Cisco содержат VLAN1 (VLAN по умолчанию), нам нужно только создать VLAN2. Switch# configure terminal Switch(config)# vlan2 Switch(config-vlan)# name voice Switch(config-vlan)# exit Switch(config)# interface vlan1 Switch(config-if)# ip address 192.168.10.2 255.255.255.0 Switch(config-if)# exit Switch(config)# interface vlan2 Switch(config-if)# ip address 192.168.20.2 255.255.255.0 Switch(config-if)# exit Далее, нам нужно создать транк порт, который будет соединятся с маршрутизатором. Для этой цели мы выберем порт GigabitEthernet 0/1 Switch# configure terminal Switch(config)# interface gigabitethernet 0/1 Switch(config-if)# switchport trunk encapsulation dot1q Switch(config-if)# switchport mode trunk Switch(config-if)# spanning-tree portfast trunk При помощи данных команд мы определили, что транк будет использовать инкапсуляцию 802.1Q, установили порт в режим транка и включили функцию portfast trunk spanning-tree, чтобы гарантировать, что порт будет пересылать пакеты немедленно при подключении к устройству, например, маршрутизатору. Внимание: команда spanning-tree portfast trunk не должна использоваться на портах, которые подключаются к другому коммутатору, чтобы избежать петель в сети. Шаг 2 – Настройка маршрутизатора Мы закончили с коммутатором и можем переходить к настройке конфигурации нашего маршрутизатора, чтобы обеспечить связь с нашим коммутатором и позволить всему трафику VLAN проходить и маршрутизироваться по мере необходимости. Создание транка на порте маршрутизатора не сильно отличается от процесса, описанного выше - хотя мы транк на одном физическом интерфейсе, мы должны создать под-интерфейс (sub-interface) для каждого VLAN. Router# configure terminal Router(config)# interface gigabitethernet0/1 Router(config-if)# no ip address Router(config-if)# duplex auto Router(config-if)# speed auto Router(config-if)# interface gigabitethernet0/1.1 Router(config-subif)# encapsulation dot1q 1 native Router(config-subif)# ip address 192.168.10.1 255.255.255.0 Router(config-subif)# interface gigabitethernet0/1.2 Router(config-subif)# encapsulation dot1q 2 Router(config-subif)# ip address 192.168.20.1 255.255.255.0 Чтобы сформировать транк с нашим коммутатором, необходимо создать один под-интерфейс для каждого VLAN, сконфигурированного на нашем коммутаторе. После создания под-интерфейса мы назначаем ему IP-адрес и устанавливаем тип инкапсуляции 802.1Q и указываем номер VLAN, к которому принадлежит под-интерфейс. Например, команда encapsulation dot1q 2 определяет инкапсуляцию 802.1Q и устанавливает под-интерфейс на VLAN 2. Параметр native который мы использовали для под-интерфейса gigabitethernet0/1.1, сообщает маршрутизатору, что нативный vlan - это VLAN 1. Это параметр по умолчанию на каждом коммутаторе Cisco и поэтому должен совпадать с маршрутизатором. Для проверки можно использовать на роутере команду show vlans, где будут отображены созданные нами под-интерфейсы, а также при помощи команды show ip route в таблице маршрутизации мы должны увидеть наши под-интерфейсы. Готово! Теперь при помощи роутера мы можем маршрутизировать файлы между разными VLAN.
img
Привет! Одна из наших недавних статей была посвящена тому, какими методами можно пользоваться для конфигурации Cisco CME (он же CUCME). Мы уже рассказали про установку Cisco Configuration Professional, и сегодня пришла очередь интегрированного графического интерфейса CME (CME Integrated GUI) . В дополнение к CCP, Cisco предоставляет графический интерфейс, который позволяет управлять некоторыми базовыми функциями CME через веб-интерфейс. Эти основные функции включают в себя настройку и управление телефонами, ephone-dn, некоторыми системными функциями, функциями голосовой почты, а также отчетами. Перед тем как получить доступ к графическому интерфейсу, необходимо выполнить несколько предварительных шагов настройки. Прежде всего, необходимо убедиться, что во флэш-память маршрутизатора загружены файлы, которые управляют графическим интерфейсом. Если файл TAR, содержащий полную установку CME был извлечен во флэш-память маршрутизатора CME, то там файлы GUI должны быть включены. Если файлы CME были установлены по отдельности, то нужно загрузить и установить файл пакета CME GUI TAR с сайта Cisco.com. Потому что доступ в графический интерфейс будет производиться через веб-интерфейс необходимо превратить наш CME роутер в мини веб-сервер. Для этого выполним на нем следующие команды: Router(config)# ip http server – включаем http сервис Router(config)# ip http secure-server – включаем https сервис Router(config)# ip http path flash:/gui – устанавливаем http сервер для использования файлов из поддиректории GUI флэш-памяти (возможно аргумент команды придется изменить, в зависимости от того где находятся файлы. В ранних версиях они находились в корневом каталоге флэш-памяти) Router(config)# ip http authentication local – настраиваем локальную аутентификацию Следующим шагом в создании графического интерфейса CME является создание учетной записи пользователя с правами доступа и управления маршрутизатором. Router(config)# telephony-service Router(config-telephony) # web admin system name admin secret 0 password – где admin это наш логин, а password это пароль Router(config-telephony) # dn-webedit Router(config-telephony) # time-webedit По умолчанию графический интерфейс CME не может добавить ephone-dn в конфигурацию CME или изменить время на маршрутизаторе CME. Команды dn-webedit и time-webedit разблокируют эти функции. Стоит заметить что если часы маршрутизатора синхронизируются через NTP, не нужно вводить команду time-webedit, чтобы гарантировать, что время будет установлено на более точный NTP-сервер. Теперь веб-интерфейс маршрутизатора CME готов к работе. Последний шаг - подключиться к нему с веб-браузера, введя URL-адрес http://[CME_IP_Address]/ccme.html для доступа к графическому интерфейсу.
ВЕСЕННИЕ СКИДКИ
40%
50%
60%
До конца акции: 30 дней 24 : 59 : 59