По вашему запросу ничего не найдено :(
Убедитесь, что запрос написан правильно, или посмотрите другие наши статьи:
img
Компания Juniper является очень крупным производителем сетевого оборудования в мире - после Cisco and Huawei. После того как вы купили, установили и скоммутировали новое оборудование, возникает вопрос о его правильной настройке. Преимуществом коммутаторов от производителя Juniper, в основном, является возможность объединения до шести коммутаторов в одно единое устройство с надежным и удобным управлением портами, сохраняя стабильную и бесперебойную работу сети. Настройка сетевого интерфейса Настройка QoS (качество обслуживания) Virtual Chassis (объединение коммутаторов) Реализация возможности сброса до заводских настроек Настроив данные компоненты, вы сможете реализовать работу сети с использованием в ней большого количества устройств для осуществления передачи трафика. Настройка сетевого интерфейса Интерфейс коммутатора отвечает за реализацию передачи данных между сетью и пользователем, что и является главной задачей коммутатора. Его конфигурация осуществляется с помощью следующих строк кода: root> configure Entering configuration mode [edit] root# edit interfaces [edit interfaces] root# Конфигурация L3: [edit interfaces] root# set em0 unit 0 family inet address 100.0.0.1/30 Где: Em0 - физический интерфейс, а Family inet - позволяет выбрать протокол интерфейса. Команда "show" позволит из Configuration Mode проверить результат вашей настройки: [edit interfaces] root# show em0 { unit 0 { family inet { address 100.0.0.1/30; } } } [edit interfaces] Теперь примените настройки с помощью следующей команды: root# commit commit complete С помощью команды ping осуществим проверку конфигурации: root> ping 100.0.0.2 rapid PING 100.0.0.2 (100.0.0.2): 56 data bytes !!!!! --- 100.0.0.2 ping statistics --- 5 packets transmitted, 5 packets received, 0% packet loss round-trip min/avg/max/stddev = 0.402/0.719/1.306/0.343 ms Конфигурация L2 root> configure Entering configuration mode [edit] root# edit interfaces em0 [edit interfaces em0] Необходимо задать дуплекс на интерфейсе: [edit interfaces em0] root# set link-mode full-duplex [edit interfaces em0] root# Примечание: L2 - устройства, работающие на канальном уровне, при этом коммутатором занимается фреймами. А L3 взаимодействуют с IP-адресами и осуществляют маршрутизацию. Конфигурация L3 включает большее число параметров за счет расширенного функционала. Настройка Virtual Chassis После правильной настройки интерфейса, следует перейти к объединению коммутаторов, которое позволит облегчить управление устройствами, а также повысить надежность работы сети, за счет взаимозаменяемости устройств. Следует отметить, что коммутаторы Juniper не имеют отдельным порт VCP, поэтому придется настраивать обычный интерфейс в качестве VCP. Конфигурация VCP вручную: Включите все коммутаторы, также вам понадобятся их заводская маркировка, которую следует записать. Для примера используем следующие: CT0216330172 CV0216450257 Включите коммутатор, который будет выполнять функцию master switch, после чего сделайте сброс настройка с помощью следующей строки кода: request system zeroize Перезагрузив систему, выполните следующие строки: ezsetup set system host-name sw_master set system domain-name metholding.int set system domain-search metholding.int set system time-zone Europe/Moscow set system root-authentication plain-text-password set system name-server 10.10.6.26 set system name-server 10.10.6.28 set system services ssh protocol-version v2 set system ntp server 10.10.1.130 version 4 set system ntp server 10.10.1.130 prefer set vlans Management description 10.10.45.0/24 set vlans Management vlan-id 100 set vlans Management l3-interface vlan.1 set interfaces vlan unit 1 family inet address 10.10.45.100/24 set routing-options static route 0.0.0.0/0 next-hop 10.10.45.1 set interfaces ge-0/0/47 unit 0 family ethernet-switching port-mode trunk set interfaces ge-0/0/47 unit 0 family ethernet-switching vlan members Management Активируем preprovisioned configuration mode: set virtual-chassis preprovisioned Вносим серийные номера оборудования: set virtual-chassis member 0 serial-number CT02/16330172 role routing-engine set virtual-chassis member 1 serial-number CV0216450257 role routing-engine set virtual-chassis no-split-detection Проверьте результат, с помощью следующей строки: root@sw-master> show virtual-chassis status Обнулите конфигурацию и включайте остальные коммутаторы: request system zeroize Раздел virtual-chassis в конфигурации должен быть пустой, а для подстраховки, используйте команду: delete virtual-chassis Настроим порты VCP для каждого коммутатора. Для данного примера, соедините коммутаторы портами ge-0/0/0 и ge-0/0/1 соответственно. Теперь задайте эти строки кода на каждом из коммутаторов: request virtual-chassis vc-port set pic-slot 0 port 0 request virtual-chassis vc-port set pic-slot 0 port 1 --------------------ВЫВОД---------------------------- root> show interfaces terse Interface Admin Link Proto Local Remote vcp-255/0/0 up up vcp-255/0/0.32768 up up vcp-255/0/1 up up vcp-255/0/1.32768 up up ge-0/0/2 up down ge-0/0/2.0 up down eth-switch Теперь два коммутатора объединились, проверить можно с помощью команды: show virtual-chassis status show virtual-chassis vc-port Если вы захотите добавить дополнительных участников к virtual-chassis, вам будет необходимо очистить конфигурацию нового коммутатора: show interfaces terse | match vcp Если есть, их надо удалить с командой: request virtual-chassis vc-port delete pic-slot 0 port 0 Внесите серийный номер дополнительного устройства: set virtual-chassis member 2 serial-number CT0217190258 role line-card Настройка портов VCP в новом коммутаторе, в котором мы соединяем следующими портами - ge-0/0/0 и ge-0/0/1: request virtual-chassis vc-port set pic-slot 0 port 0 request virtual-chassis vc-port set pic-slot 0 port 1 Теперь проверьте их наличие: show interfaces terse | match vcp НастройкаQoS Технология QoS используется для распределение используемого трафика и ранжирование на классы с различным приоритетом. Технология необходима для увеличения вероятности пропускания трафика между точками в сети. Сейчас мы рассмотрим деление потока трафика с приоритетом на ip-телефонию и видеоконференцсвязь на коммутаторе и использованием настроек по умолчанию class-of-service (CoS). Допустим, что ip-телефоны подключены к коммутатору, а для маркировки ip-пакетов от ip-PBX и других ip-телефонов используются следующие показания DSCP: 46 - ef - медиа (RTP) 24 - cs3 - сигнализация (SIP, H323, Unistim) 32 - cs4 - видео с кодеков (RTP) 34 - af41 - видео с телефона, софтового клиента, кодека (RTP) 0 - весь остальной трафик без маркировки. DSCP - является самостоятельным элементом в архитектуре сети, описывающий механизм классификации, а также Обеспечивающий ускорение и снижение задержек для мультимедийного трафика. Используется пространство поля ToS, являющийся компонентом вспомогательным QoS. Теперь требуется dscp ef и af отнести к необходимым внутренним классам expedited-forwarding и assured-forwarding. За счет конфигурации classifiers, появляется возможность создания новых классов. ex2200> show configuration class-of-service classifiers dscp custom-dscp { forwarding-class network-control { loss-priority low code-points [ cs6 cs7 ]; } forwarding-class expedited-forwarding { loss-priority low code-points ef; } forwarding-class assured-forwarding { loss-priority low code-points [ cs3 cs4 af41 ]; } } ex2200> show configuration class-of-service schedulers sc-ef { buffer-size percent 10; priority strict-high; } sc-af { shaping-rate 20m; buffer-size percent 10; } sc-nc { buffer-size percent 5; priority strict-high; } sc-be { shaping-rate percent 80; buffer-size { remainder; } } Наименования можно выбрать произвольно, но а процент выделенных буферов - в соответствии с необходимостью. Ключевым приоритетом работы QoS является определение трафика с ограничением пропускающей полосы в зависимости от потребности в ней. Шедулеры сопоставляются в соответствии с внутренними классами, в результате которого scheduler-map и classifier необходимо применяется ко всем интерфейсам, используя и описывая их в качестве шаблона. К интерфейсу возможно применять специфические настройки, подразумевающие возможность написания всевозможных scheduler и scheduler-maps для различных интерфейсов. Конечная конфигурация имеет следующий вид: ex2200> show configuration class-of-service classifiers { dscp custom-dscp { forwarding-class network-control { loss-priority low code-points [ cs6 cs7 ]; } forwarding-class expedited-forwarding { loss-priority low code-points ef; } forwarding-class assured-forwarding { loss-priority low code-points [ cs3 cs4 af41 ]; } } } host-outbound-traffic { forwarding-class network-control; } interfaces { ge-* { scheduler-map custom-maps; unit 0 { classifiers { dscp custom-dscp; } } } ae* { scheduler-map custom-maps; unit 0 { classifiers { dscp custom-dscp; } } } } scheduler-maps { custom-maps { forwarding-class network-control scheduler sc-nc; forwarding-class expedited-forwarding scheduler sc-ef; forwarding-class assured-forwarding scheduler sc-af; forwarding-class best-effort scheduler sc-be; } } schedulers { sc-ef { buffer-size percent 10; priority strict-high; } sc-af { shaping-rate 20m; buffer-size percent 10; } sc-nc { buffer-size percent 5; priority strict-high; } sc-be { shaping-rate percent 80; buffer-size { remainder; } } } Перед использованием данной настройки, проверьте командой commit check. А при наличии следующей ошибки, следует учесть следующее: [edit class-of-service interfaces] 'ge-*' One or more "strict-high" priority queues have lower queue-numbers than priority "low" queues in custom-maps for ge-*. Ifd ge-* supports strict-high priority only on higher numbered queues. error: configuration check-out failed В итоге мы не можем указать приоритет "strict-high" только для 5-ой очереди, когда у 7-ой останется приоритет "low". При этом можно решить проблему следующим образом: настроить для network-control приоритет "strict-high". Применив конфигурацию, определенный процент фреймов в очередях будет потеряна. Требуется обнулить счетчики, проверить счетчики дропов через некоторое время, где переменные значения не равны нулю. clear interfaces statistics all show interfaces queue | match dropped | except " 0$" При росте счетчиков дропа в конфигурации есть ошибка. Если вы пропустили описание в class-of-service interfaces шаблоном или в явном виде, то трафик в классах со стопроцентной вероятностью дропнется. Правильная работа выглядит следующим образом: ex2200> show interfaces queue ge-0/0/22 Physical interface: ge-0/0/22, Enabled, Physical link is Up Interface index: 151, SNMP ifIndex: 531 Forwarding classes: 16 supported, 4 in use Egress queues: 8 supported, 4 in use Queue: 0, Forwarding classes: best-effort Queued: Transmitted: Packets : 320486 Bytes : 145189648 Tail-dropped packets : 0 RL-dropped packets : 0 RL-dropped bytes : 0 Queue: 1, Forwarding classes: assured-forwarding Queued: Transmitted: Packets : 317 Bytes : 169479 Tail-dropped packets : 0 RL-dropped packets : 0 RL-dropped bytes : 0 Queue: 5, Forwarding classes: expedited-forwarding Queued: Transmitted: Packets : 624 Bytes : 138260 Tail-dropped packets : 0 RL-dropped packets : 0 RL-dropped bytes : 0 Queue: 7, Forwarding classes: network-control Queued: Transmitted: Packets : 674 Bytes : 243314 Tail-dropped packets : 0 RL-dropped packets : 0 RL-dropped bytes : 0 Переход к заводским настройкам Если вам избавится от вашей конфигурации, которая работает некорректно вы можете сбросить настройки до заводских параметров. Советуем использовать данную функции, предусмотренную производителем оборудования, в случае реальной сложности в поиске ошибки, выполнив конфигурацию заново, вы можете заметно сэкономить свое время. Самый простой способ, это ввод следующей команды: load factory defaults После ввода команды, система оповестит Вас о том, что в данный момент будет осуществлена активация заводских настроек по умолчанию. А с помощью привычной команды "commit" активируем настройки и перезагружаемся. Мы рассмотрели базовые настройки коммутаторов Juniper, позволяющих создание надежной и гибкой сети для различных нужд.
img
Всем привет! Сегодня мы поговорим о такой функции FreePBX как перехват вызова (Call Pickup). Эта функция позволяет перехватывать вызовы, которые приходят на другие телефоны, состоящие в одной группе перехвата. То есть вы можете перехватить звонок, направленный вашему коллеге, которого нет на рабочем месте и самостоятельно поговорить со звонившем, не потеряв при этом звонок, и не заставляя зря ждать на трубке. Как это сделать? Очень просто, и сейчас мы вам это расскажем! Настройка В веб-интерфейсе FreePBX переходим в раздел Applications → Extensions и заходим в настройки extension’a, во вкладку Advanced. Тут листаем вниз и находим две строки Call Groups и Pickup Groups. Вот они-то нам и нужны. Что они значат? Call Groups – это группа перехвата, в которую входит данный Extension. Устройство может входить сразу в несколько групп. Pickup Groups – это поле указывает устройства каких групп мы можем перехватывать, и здесь тоже можно указать несколько групп. Чтобы перехватывать вызов не обязательно находиться в группе, достаточно чтобы она была указана в Pickup Groups. Что дальше? Теперь нужно дождаться, когда придет звонок на телефон из группы перехвата и в самый ответственный момент набрать *8 и вы сможете перехватить входящий вызов себе. Это Feature Code, который можно повесить на кнопку быстрого вызова, и перехватывать звонки еще быстрее. Но это еще не все! Бывает, когда нужно очень-очень сильно перехватить входящий вызов, но телефон, на который он приходит не находиться в доступных группах перехвата или они не настроены вовсе. Для этого нужно набрать волшебную комбинацию - **номер_телефона. Например: **1234. Всего две звёздочки, номер телефона и вы на коне!
img
Транспортный уровень OSI (уровень 4) определяет несколько функций, наиболее важными из которых являются восстановление после ошибок и управление потоком. Точно так же протоколы транспортного уровня TCP / IP также реализуют те же типы функций. Обратите внимание, что и модель OSI, и модель TCP / IP называют этот уровень транспортным. Но, как обычно, когда речь идет о модели TCP / IP, имя и номер уровня основаны на OSI, поэтому любые протоколы транспортного уровня TCP / IP считаются протоколами уровня 4. Ключевое различие между TCP и UDP заключается в том, что TCP предоставляет широкий спектр услуг приложениям, а UDP-нет. Например, маршрутизаторы отбрасывают пакеты по многим причинам, включая битовые ошибки, перегрузку и случаи, в которых не известны правильные маршруты. Известно, что большинство протоколов передачи данных замечают ошибки (процесс, называемый error detection), и затем отбрасывают кадры, которые имеют ошибки. TCP обеспечивает повторную передачу (error recovery) и помогает избежать перегрузки (управление потоком), в то время как UDP этого не делает. В результате многие прикладные протоколы предпочитают использовать TCP. Разница между TCP и UDP в одном видео Однако не думайте, что отсутствие служб у UDP делает UDP хуже TCP. Предоставляя меньше услуг, UDP требует меньше байтов в своем заголовке по сравнению с TCP, что приводит к меньшему количеству байтов служебных данных в сети. Программное обеспечение UDP не замедляет передачу данных в тех случаях, когда TCP может замедляться намеренно. Кроме того, некоторым приложениям, особенно сегодня, к передаче голоса по IP (VoIP) и видео по IP, не требуется восстановление после ошибок, поэтому они используют UDP. Итак, сегодня UDP также занимает важное место в сетях TCP / IP. В таблице 1 перечислены основные функции, поддерживаемые TCP/UDP. Обратите внимание, что только первый элемент, указанный в таблице, поддерживается UDP, тогда как TCP поддерживаются все элементы в таблице. Таблица № 1 Функции транспортного уровня TCP/IP Функции Описание Мультиплексирование с использованием портов Функция, которая позволяет принимающим хостам выбирать правильное приложение, для которого предназначены данные, на основе номера порта. Восстановление после ошибок (надежность) Процесс нумерации и подтверждения данных с помощью полей заголовка Sequence и Acknowledgment Управление потоком с использованием окон Процесс, использующий размеры окна для защиты буферного пространства и устройств маршрутизации от перегрузки трафиком. Установление и завершение соединения Процесс, используемый для инициализации номеров портов, а также полей Sequence и Acknowledgment. Упорядоченная передача данных и сегментация данных Непрерывный поток байтов от процесса верхнего уровня, который "сегментируется" для передачи и доставляется процессам верхнего уровня на принимающем устройстве с байтами в том же порядке Далее описываются возможности TCP, а затем приводится краткое сравнение с UDP. Transmission Control Protocol Каждое приложение TCP / IP обычно выбирает использование TCP или UDP в зависимости от требований приложения. Например, TCP обеспечивает восстановление после ошибок, но для этого он потребляет больше полосы пропускания и использует больше циклов обработки. UDP не выполняет исправление ошибок, но требует меньшей пропускной способности и меньшего количества циклов обработки. Независимо от того, какой из этих двух протоколов транспортного уровня TCP / IP приложение выберет для использования, вы должны понимать основы работы каждого из этих протоколов транспортного уровня. TCP, как определено в Request For Comments (RFC) 793, выполняет функции, перечисленные в таблице 1, через механизмы на конечных компьютерах. TCP полагается на IP для сквозной доставки данных, включая вопросы маршрутизации. Другими словами, TCP выполняет только часть функций, необходимых для доставки данных между приложениями. Кроме того, роль, которую он играет, направлена на предоставление услуг для приложений, установленных на конечных компьютерах. Независимо от того, находятся ли два компьютера в одном Ethernet или разделены всем Интернетом, TCP выполняет свои функции одинаково. На рисунке 1 показаны поля заголовка TCP. Хотя вам не нужно запоминать названия полей или их расположение, оставшаяся часть этой лекции относится к нескольким полям, поэтому весь заголовок включен сюда для справки. Сообщение, созданное TCP, которое начинается с заголовка TCP, за которым следуют данные приложения, называется сегментом TCP. В качестве альтернативы также может использоваться более общий термин PDU уровня 4 или L4PDU. Мультиплексирование с использованием номеров портов TCP И TCP, и UDP используют концепцию, называемую мультиплексированием. Поэтому этот подраздел начинается с объяснения мультиплексирования с TCP и UDP. После этого исследуются уникальные возможности TCP. Мультиплексирование по TCP и UDP включает в себя процесс того, как компьютер думает при получении данных. На компьютере может быть запущено множество приложений, таких как веб-браузер, электронная почта или приложение Internet VoIP (например, Skype). Мультиплексирование TCP и UDP сообщает принимающему компьютеру, какому приложению передать полученные данные. Определенные примеры помогут сделать очевидной необходимость мультиплексирования. Сеть из примера состоит из двух компьютеров, помеченных как Анна и Гриша. Анна использует написанное ею приложение для рассылки рекламных объявлений, которые появляются на экране Григория. Приложение отправляет Григорию новое объявление каждые 10 секунд. Анна использует второе приложение, чтобы отправить Грише деньги. Наконец, Анна использует веб-браузер для доступа к веб-серверу, который работает на компьютере Григория. Рекламное приложение и приложение для электронного перевода являются воображаемыми, только для этого примера. Веб-приложение работает так же, как и в реальной жизни. На рисунке 2 показан пример сети, в которой Гриша запускает три приложения: Рекламное приложение на основе UDP Приложение для банковских переводов на основе TCP Приложение веб-сервера TCP Грише необходимо знать, в какое приложение передавать данные, но все три пакета поступают из одного и того же Ethernet и IP-адреса. Вы могли подумать, что Григорий может посмотреть, содержит ли пакет заголовок UDP или TCP, но, как вы видите на рисунке, два приложения (wire transfer и web) используют TCP. TCP и UDP решают эту проблему, используя поле номера порта в заголовке TCP или UDP соответственно. Каждый из сегментов TCP и UDP Анны использует свой номер порта назначения, чтобы Григорий знал, какому приложению передать данные. На рисунке 3 показан пример. Мультиплексирование основывается на концепции, называемой сокетом. Сокет состоит из трех частей: IP-адрес Транспортный протокол Номер порта Итак, для приложения веб-сервера Григория, сокет будет (10.1.1.2, TCP, порт 80), потому что по умолчанию веб-серверы используют хорошо известный порт 80. Когда веб-браузер Анны подключается к веб-серверу, Анна также использует сокет - возможно, такой: (10.1.1.1, TCP, 49160). Почему 49160? Что ж, Анне просто нужен номер порта, уникальный для Анны, поэтому Анна видит этот порт 49160. Internet Assigned Numbers Authority (IANA), организация, которая управляет распределением IP-адресов во всем мире, и подразделяет диапазоны номеров портов на три основных диапазона. Первые два диапазона резервируют номера, которые IANA затем может назначить конкретным протоколам приложений через процесс приложения и проверки, а третья категория резервирует порты, которые будут динамически выделяться для клиентов, как в примере с портом 49160 в предыдущем абзаце. Имена и диапазоны номеров портов (более подробно описано в RFC 6335): Хорошо известные (системные) порты: номера от 0 до 1023, присвоенные IANA, с более строгим процессом проверки для назначения новых портов, чем пользовательские порты. Пользовательские (зарегистрированные) порты: номера от 1024 до 49151, присвоенные IANA с менее строгим процессом назначения новых портов по сравнению с хорошо известными портами. Эфемерные (динамические, частные) порты: номера от 49152 до 65535, не назначены и не предназначены для динамического выделения и временного использования для клиентского приложения во время его работы. На рисунке 4 показан пример, в котором используются три временных порта на пользовательском устройстве слева, а сервер справа использует два хорошо известных порта и один пользовательский порт. Компьютеры используют три приложения одновременно; следовательно, открыто три сокетных соединения. Поскольку сокет на одном компьютере должен быть уникальным, соединение между двумя сокетами должно идентифицировать уникальное соединение между двумя компьютерами. Эта уникальность означает, что вы можете использовать несколько приложений одновременно, разговаривая с приложениями, запущенными на одном или разных компьютерах. Мультиплексирование на основе сокетов гарантирует, что данные будут доставлены в нужные приложения. Номера портов являются важной частью концепции сокетов. Серверы используют хорошо известные порты (или пользовательские порты), тогда как клиенты используют динамические порты. Приложения, которые предоставляют услуги, такие как FTP, Telnet и веб-серверы, открывают сокет, используя известный порт, и прослушивают запросы на подключение. Поскольку эти запросы на подключение от клиентов должны включать номера портов источника и назначения, номера портов, используемые серверами, должны быть известны заранее. Таким образом, каждая служба использует определенный хорошо известный номер порта или номер пользовательского порта. Как общеизвестные, так и пользовательские порты перечислены на www.iana.org/assignments/servicenames-port-numbers/service-names-port-numbers.txt. На клиентских машинах, откуда исходят запросы, можно выделить любой локально неиспользуемый номер порта. В результате каждый клиент на одном и том же хосте использует другой номер порта, но сервер использует один и тот же номер порта для всех подключений. Например, 100 веб-браузеров на одном и том же хост-компьютере могут подключаться к веб-серверу, но веб-сервер со 100 подключенными к нему клиентами будет иметь только один сокет и, следовательно, только один номер порта (в данном случае порт 80). Сервер может определить, какие пакеты отправлены от какого из 100 клиентов, посмотрев на порт источника полученных сегментов TCP. Сервер может отправлять данные правильному веб-клиенту (браузеру), отправляя данные на тот же номер порта, который указан в качестве порта назначения. Комбинация сокетов источника и назначения позволяет всем участвующим хостам различать источник и назначение данных. Хотя в примере объясняется концепция использования 100 TCP-соединений, та же концепция нумерации портов применяется к сеансам UDP таким же образом. Почитайте продолжение цикла про популярные приложения TCP/IP.
ВЕСЕННИЕ СКИДКИ
40%
50%
60%
До конца акции: 30 дней 24 : 59 : 59