По вашему запросу ничего не найдено :(
Убедитесь, что запрос написан правильно, или посмотрите другие наши статьи:
img
Механизм передачи данных или информации между двумя связанными устройствами, соединенными по сети, называется режимом передачи. Режим передачи также называется режимом связи. Он указывает направление потока сигнала между двумя связанными устройствами. Шины и сети предназначены для обеспечения связи между отдельными устройствами, связанными по сети. Категории режимов транзакций Существует три категории режимов передачи: симплексный режим полудуплексный режим полнодуплексный режим Симплексный режим В этом типе режима передачи связь является однонаправленной, то есть данные могут передаваться только в одном направлении. Это означает, что вы не можете отправить сообщение обратно отправителю, как на улице с односторонним движением. Из этих двух устройств только одно может отправлять или передавать по каналу связи, а другое-только принимать данные. Пример: Симплексную дуплексную передачу можно увидеть между компьютером и клавиатурой. Телевизионное вещание, телевидение и пульт дистанционного управления также являются примерами симплексной дуплексной передачи. Другой пример симплексной передачи включает в себя акустическую систему. Диктор говорит в микрофон, и голос передается через усилитель, а затем на динамики. Преимущество Симплексного режима В этом режиме станция может использовать всю пропускную способность канала связи, поэтому одновременно может передаваться больше данных. Недостаток Симплексного режима В основном коммуникации требуют двустороннего обмена данными, но это однонаправленный обмен, поэтому здесь нет связи между устройствами. Полудуплексный Режим В полудуплексном режиме каждая станция может также передавать и принимать данные. Поток сообщений может идти в обоих направлениях, но не одновременно. Вся пропускная способность канала связи используется в одном направлении за один раз. В полудуплексном режиме отправитель отправляет данные и ожидает их подтверждения, а если есть какая-либо ошибка, то получатель может потребовать от него повторной передачи этих данных. Благодаря этому возможно обнаружение ошибок. Примером полудуплексного режима является рация. В рации с одной стороны говорят в микрофон устройства, а с другой-кто-то слушает. После паузы другой говорит, и первое лицо слушает. Пример: Это как однополосная дорога с двунаправленным движением. Пока машины едут в одном направлении, машины, идущие в другую сторону, должны ждать. Преимущество Полудуплексного режима В полудуплексном режиме вся пропускная способность канала берется на себя любым из двух устройств, передающих одновременно. Недостаток Полудуплексного режима Это вызывает задержку в отправке данных в нужное время, так как когда одно устройство отправляет данные, то другое должно ждать отправки данных. Полный Дуплексный Режим В полнодуплексном режиме связь является двунаправленной, то есть поток данных идет в обоих направлениях одновременно. С обоих концов прием и передача данных возможны одновременно. Полнодуплексный режим имеет два физически отдельных пути передачи, один из которых предназначен для движения трафика в одном направлении, а другой-для движения трафика в противоположном направлении. Это один из самых быстрых способов связи между устройствами. Пример: По телефонной линии два человека общаются друг с другом, оба могут говорить и слушать друг друга одновременно, это полнодуплексная передача. Другой пример - улица с двусторонним движением, движение по которой осуществляется одновременно в обоих направлениях. Преимущество Полнодуплексного режима Обе станции могут отправлять и получать данные одновременно, поэтому емкость канала может быть разделена. Недостаток Полнодуплексного режима Полоса пропускания канала связи делится на две части, если между устройствами нет выделенного пути.
img
Безопасность личных данных стоит почти наравне с физической безопасностью людей. Развитие Интернет технологий создало возможность мгновенного доступа ко всей информации не выходя из дома. Государственные организации создают электронный порталы, где можно получить любую информацию о себе. Финансовые организации оказывают онлайн услуги клиентам в виде интернет-банкинга. Публичные сети же сделали все это более доступным. Сидя в любом кафе можем проверить свой банковский счет, получить нужную справку в электронном формате, занять онлайн очередь в разных структурах. Но зачастую подключаясь к открытым, бесплатным беспроводным сетям мы даже не задумываемся, а на самом ли деле на том конце стоит маршрутизатор и наши данные не попадают в руки тех, кто не должен их видеть. В публичных сетях много угроз, одной из которых является атака MITM Man-in-the-Middle "Человек посередине" или атака посредника. Вкратце это такой тип атаки когда хакеры, подключившись к точке доступа, могут поместить себя в качестве посредника между двумя пользователями, у которых нет протоколов взаимной аутентификации. Как только злоумышленники полностью завладевают соединением, они могут читать и даже изменять любую передаваемую информацию. Опытные хакеры могут даже извлечь из потока данных информацию о вашей банковской карте. Последствия утраты таких данных очевидны. Такой вид атаки легче организовать в беспроводных сетях, хотя и проводные сети не застрахованы от этой атаки. Но в проводных сетях можно настроить сетевые устройства таким образом, чтобы она реагировала на смену связки IP и MAC-адреса и при обнаружении заблокировать доступ к сети подозрительному устройству. В проводных же сетях, особенно если это публичные сети, всё немного сложнее. Поэтому пользователям придется самим позаботиться о безопасности своих личных данных. Приготовиться к атаке! Чтобы не стать жертвой атаки типа MITM, нужно знать всего несколько правил безопасности. Первое правило - Firewall Во-первых, включите на своём устройстве межсетевой экран. В системе Windows это Windows Defender Firewall. Он по умолчанию включён, если у вас не установлено стороннее ПО, выполняющее ту же функцию. Проверить и включить Firewall можно на панели управления перейдя по одноимённому пункту меню и выбрав Включить/выключить Windows Defender Firewall: Это защитит ваш компьютер от вторжения злоумышленника и кражи ваших электронных данных. Также не помещает установить какой-нибудь антивирус, даже бесплатный, который способен защитить ваше устройство от заражения сетевым червем, который тоже занимается кражей данных и не только. Никакого HTTP! Во-вторых, в публичных сетях лучше избегать пользования услугами онлайн-банкинга. Но если есть сильная необходимость, то убедитесь, что ваш банк обеспечивает шифрованное соединение между вами и сервером. Проверить это легко. При шифрованном соединении в строке браузера перед адресом отображается значок замка, а перед адресом сайта отображается https://. HTTPS это защищенный протокол передачи данных в сети. Hypertext Transfer Protocol основной протокол связи в интернете. Когда пользователь вводит адрес в строке браузера, последний создает соединение с веб-сервером по этому протоколу. Позже была разработана защищенная версия данного протокола, которая отправляет данные поверх SSL или TLS. Такое соединение позволяет шифровать данные перед отправкой на сервер. Шифрование происходит на устройстве пользователя методом асимметричного шифрования с помощью публичного ключа, который сайт отправляет вам вместе с сертификатом. Посмотреть сертификат сайта и публичный ключ можно в том же браузере. В Google Chrome кликаем на значок замка и выбираем Certificate. В открывшемся окне можно увидеть всю информацию о сертификате включая срок действия и подписавшую сертификат центра сертификации. Расшифровать данные сможет только веб-сервер где имеется вторая приватная часть ключа шифрования. И даже если ваши зашифрованные данные попадут в руки злоумышленников, расшифровать их им придется долго. Правда, атака посредника имеет несколько векторов развития и при наличии необходимых навыков злоумышленник может получить доступ даже к шифрованной информации. Например, он может взломать сервера центра сертификации и заполучить все ключи, которые выданы клиентам. Но это уже больше забота самих центров сертификации. Некоторые сайты имеют две версии, защищенную и обычную через http-протокол. Чтобы всегда пользоваться только защищенным соединением, можете устанавливать специальные расширения для браузеров. Шифрование через VPN В-третьих, при подключении к публичным сетям рекомендуется пользоваться VPN сервисами. VPN сервисы создают защищенный туннель между вами и серверами поставщика VPN услуг. Все данные в таком туннеле тоже шифруются надежными алгоритмами шифрования. Услуги VPN предоставляют даже некоторые браузеры, например Opera или Яндекс.Браузер. Так же есть специальные расширения для браузеров и настольные приложения. Правда, при работе через VPN скорость ощутимо падает, но безопасность данных того стоит. Кстати, о том, что такое VPN и как он обходит блокировки можно почитать в нашей статье Ну а напоследок, просто быть повнимательнее. Не нужно подключаться к первой попавшейся беспроводной сети с подозрительным названием. Если вы сидите в кафе, то название точки доступа обычно совпадает с названием объекта. Правда, подмену SSID никто не отменял, но для этого нужно вырубить роутер, безопасность которого забота сотрудников ИТ отдела данного объекта. Безопасного интернет-серфинга!
img
При настройке телефонной маршрутизации очень часто возникает необходимость изменения (корректировки) телефонных номеров, как набираемого (Б-номер), так и инициатора вызова (А-номер, АОН). Например, абоненты вашей станции набирают междугородние/федеральные номера через префикс "8", а вышестоящему оператору связи необходимо передавать номер без префикса, в десятизначном формате. Или вызовы на вашу станцию приходят с кодом зоны, а внутри станции используются номера в 6 или 7 знаков, и лишние символы необходимо удалить. Для корректировки номеров в SoftX3000 существует множество инструментов, применяемые в зависимости от конкретных случаев. Рассмотрим некоторые из них. Таблица корректировки символов DNC Для любых операций с изменением номера используются правила таблицы DNC. Эти правила используются для непосредственной корректировки символов, а все прочие команды определяют, в отношении какого поля (А-номер или Б-номер), на каком направлении (входящее/исходящее) и на какой транк-группе будет применено это правило. Для добавления правила в эту таблицу используется команда ADD DNC. Назначение атрибутов и применение этой команды: Number change index порядковый номер правила. Используется для идентификации правила Number change type тип преобразования номера, принимает значения: NONE номер не изменяется. Используется, если нужно изменить только тип номера MOD изменение цифр номера DEL удаление цифр из номера, указываем позицию, начиная с которой удаляются цифры (Change location) и количество цифр (Change length) INS добавление цифр в номер, указываем позицию, куда вставляем цифры (Change location) и сами цифры (New number) RPL замена цифр в номере, указываем позицию, с которой начинаются цифры для замены (Change location) и сами цифры (New number) Change location позиция цифр, которые подлежат корректировке. Nature of address indicator тип номера, принимает значения: NONE тип номера не изменяется IDN международный номер NDN национальный номер UDN местный номер UNN неизвестный номер SDN специальный номер New number добавляемые (изменяемые) цифры. Для наглядности приведем реальные примеры таких правил: В таблице выше: Правило №2 изменяет первый символ в номере (Change location 0) на цифру 8 (New number). Правило №4 удаляет первые (Change location 0) два символа (Change length - 2) в номере и преобразует тип номера в международный. Правило №9 заменяет первые (Change location 0) шесть символов (Change length - 6) на номер 29xxxx. В системе можно создать 65535 правил, правило под №0 системное, изменению не подлежит. Изменение А и Б номеров на исходящем направлении Для корректировки номеров вызовах в исходящих направлениях используется две таблицы: TGLD здесь компонуются правила для А и Б номера. TGLDIDX указывает транк, в отношении которого применяется правило TGLD и условия, при которых оно применяется. При добавлении записи командой ADD TGLD, необходимо задать следующие обязательные параметры: Bearer index номер правила по порядку. Этот номер будет использоваться для идентификации в таблице TGLDIDX. Trunk seizure point минимальная длина набираемого номера. Caller sending change index правило из таблицы DNC, которое будет применено к А-номеру. Callee sending change index правило из таблицы DNC, применяемое к Б-номеру. Примеры записей TGLD: Здесь запись TGLD=1 изменяет А-номер по правилу DNC=3 и Б-номер по правилу DNC=12. Далее, необходимо привязать созданное правила TGLD к транкам. Для этого используем команду ADD TGLDIDX: Указываем следующие параметры: Trunk group number номер транка, к которому применяется данное правило. Call source code callsource источника вызова, по которому срабатывает правило. Если код отличается, правило не применится. Чтобы применить правило ко всем callsrc, необходимо указать 65534. Local DN set код Local DN set, к которому принадлежат номера/транки, совершающие вызов. Call prefix префикс, при наборе которого срабатывает правило. Bearer index номер правила из таблицы TGLD, которое было создано предыдущей командой. Пример: Рассмотрим правила, применяемые к транку №7 (столбец Trunk group number): Для вызовов с callsource=5 при наборе "8" будет применено правило TGLD=2. Для вызовов с любых прочих callsource при наборе 8 будет применено правило TGLD=17. Для вызовов с любых callsource при наборе 810 будет применено правило TGLD=1. Изменение А и Б номеров на входящем направлении Для изменения атрибутов вызова во входящем направлении применительно ко всем входящим вызовам с определенным callsrc (это может быть группа транков или группа абонентов, объединённых этим параметром), используется таблица PFXPRO. Рассмотрим назначение параметров команды ADD PFXPRO сразу на примере: Параметры имеют следующее назначение: Call source code = 0 правило будет применяться к входящим вызовам с callsrc=0 и только к ним. Call prefix = 871229 правило применяется, если Б-номер начинается с этого префикса (871229). Local DN set = 0 набор номера должен производится с транка или абонента, привязанного к Local DN set = 0. Следует отметить, что вышеуказанный префикс (871229) должен присутствовать в таблице CNACLD с любым атрибутом в указанном Local DN set. Called number change flag = true означает, что Б-номер подлежит изменению. Called number change index = 1 Б-номер будет изменен по правилу DNC=1, которое, для наглядности, приведено ниже: Согласно данному правилу, из номера Б будут удалены первые 4 символа. Reanalysis = true после всех изменений вызов снова будет обработан как вновь поступивший и смаршрутизирован согласно новым параметрам А и Б номеров. Таким образом, вызов, поступивший с атрибутом callsrc=0, в котором Б-номер соответствует шаблону 871229хххх, вновь поступит на обработку, но уже с Б-номером 29хххх, то есть будет вызван 6-значный номер внутреннего абонента станции. Таблица PFXPRO так же позволяет корректировать и А-номер (поля Caller number change flag и Caller number change index), назначить новое значение источника вызова (New call source code) и изменять некоторые другие поля. В нашей станции данная таблица используется в нескольких целях: Приведение Б-номеров по входящему направлению к виду, который мы можем маршрутизировать, то есть: от операторов связи приходит вызов на номер 871229xxxx, а номера абонентов нашей станции 29xxxx, соответственно, нам нужно отрезать первые 4 символа, чтобы распознать нашего абонента. Номера некоторых экстренных служб имеют общий вид (6-значный городской номер), однако абонент набирает короткий номер службы (01, 02, 03). Нам нужно распознать такой набор и подменить номер на реальный. Кроме того, в зависимости от того, в какой местности расположен абонент, номера одной и той же службы могут быть разными. Для того, чтобы учесть этот аспект, мы и используем атрибут callsrc (назначаем каждому району свой callsrc и в соответствии с ним осуществляем подмену набранного номера). Изменение атрибутов вызова на входящем направлении на определенном транке Для корректировки атрибутов вызова на входящем транке используется таблица CLRDSN. Запись CLRDSN привязывается к определенному транку командой ADD TGDSG. В самой команде CLRDSN можно создать несколько правил корректировки, которые будут срабатывать в зависимости от А-номера: Для добавления правила даем команду ADD CLRDSN: Здесь заполняем следующие поля: Discrimination group number номер правила, по этому номеру выполняется привязка к транку в команде ADD TGDSG (в предыдущем примере, например, мы рассматривали параметры правила №5). Caller number номер вызывающего, то есть А-номер. Можем указать конкретный номер или начальный префикс (например, если указать 995, правило будет действовать на все вызовы, которые совершаются с номеров, начинающихся на 995). Есть возможность использовать так называемый символ "Wildcard", то есть применить к любым возможным номерам, для этого вводим символ "E". Префикс в данном поле должен быть таким же, как он приходит из транка. Например, если установить префикс 906, а из транка номер буден приходить 8906 или 7906 правило не сработает. Address nature тип А-номера. Позволяет ограничить применение правила только к А-номерам определенного типа, то есть, только для Unknown неизвестный International международный National междугородный Subscriber местный All все типы номеров Function code тип действия с вызовом. Выбираем ATT(Modify caller attribute), то есть изменение атрибутов А-номера. Call source code если установить значение, код callsource будет изменен. Если оставит пустым, будет установлен callsource = 0. (Однажды потратил полдня, пока не обнаружил эту особенность). Number change index правило DNC, которое будет применено к А-номеру. Если дать команду с тем же номером Discrimination group number, но другими параметрами, правило будет добавлено в ту же группу. Таким образом, мы добавим правила для разных номеров (или разных типов номеров) в одну группу и сможем привязать ее к транку. Как было сказано ранее, привязку правила CLRDSN к транку выполняется командой ADD TGDSG. Мы используем данную функцию для нескольких сценариев. Сценарий 1 Подмена номера от подключенной УПАТС. Например, имеем некоторую УПАТС, которая подключена к нашей станции. Мы выдали им номер из нашей емкости, которую они, в том числе, должны использовать в качестве А-номера (29хххх). Однако, по какой-то причине, в поле А-номера абонент присылает нам внутренние номера своей станции (101, 102 и т.д.). а) Добавим правило DNC, которое выполнит полную подмену номера на тот, который должен быть: б) Создадим правило, в котором применим правило DNC=15 (number change index = 15), ко всем входящим вызовам (number = E, Adress nature = All number): в) Привяжем правило CLRDSN=30 к транку №30 командой ADD TGDSG: Сценарий 2 Блокировка нежелательных вызовов с транка (например, для спам-звонков). Для блокировки вызовов в станции создан Local DNset с пустой таблицей маршрутизации (в таблице CNACLD нет никаких записей), и создан callsource (callsrc=4), привязанный к этому Local DNset. При совпадении А-номера с нежелательным, вызову назначается callsrc=4, тем самым вызов не сможет быть смаршрутизирован и будет отбит. Сценарий 3 Фильтрация входящих вызовов с транка. В данном случае, изначально присваиваем траку callsrc=4, тем самым, по-умолчанию, все входящие вызовы будут запрещены. Затем создаются правила CLRDSN с определенными условиями, при соблюдении которых входящий вызов может быть смаршрутизирован. При выполнении этих условий код callsrc заменяется на разрешенный и вызов проходит. Условиями для проверки обычно выступают префикс А-номера. Например, при входящих вызовах от сотового оператора все А-номера должны начинаться на с символа "9". При входящих вызовах с наших УПАТС А-номер должен начинаться с цифр "29" и т.д. Изменение атрибутов вызова по Б-номеру для внутренних абонентов Данная функция может использоваться для разных задач. Одна из них ограничение исходящих вызовов для определенного абонента на определенный номер. В нашем примере это будут исходящие вызовы на префикс 810, то есть международные вызовы (эту задачу можно решить и другими способами). Используем команду ADD CNACLR: Здесь выделим следующие параметры: Call source code код callsrc, к которому принадлежит номер. Call prefix префикс, при наборе которого срабатывает правило. Caller number номер телефона абонента, к которому применяется правило. Здесь так же применимо выражение wildcard, то есть применить правило к любому номеру, установив символ "E". Function code тип обработки вызова. В данном случае используем изменение Б-номера, выбрав Modify caller attribute. Caller number change index правило DNC, которое применяется к А-номеру. Called number change index правило DNC, которое применяется к Б-номеру. Reanalysis flag = true устанавливаем данный флаг для повторной обработки вызова в таблице маршрутизации с новыми параметрами. Приведенное правило используется в следующем сценарии. В организации приобретен номер 8-800, вызовы на которые переадресуются на локальный номер станции 29хххх. При помощи данного правила мы можем обнаружить набор этого номера 8800 локальными абонентами и подменить его на локальный номер назначения внутри станции, тем самым избежав тарификации этих вызовов на платформе 8800, а так же снизив внешний трафик. Применение данных функций и команд не ограничивается приведенными сценариями, и ограничено только фантазией и лицензиями оборудования. Версия станции Huawei SoftX3000 V300R600, но команды будут применимы на более свежих версиях, а принцип их применения такой же.
ВЕСЕННИЕ СКИДКИ
40%
50%
60%
До конца акции: 30 дней 24 : 59 : 59