По вашему запросу ничего не найдено :(
Убедитесь, что запрос написан правильно, или посмотрите другие наши статьи:
img
В данной статье обзорно рассмотрим, какие программные оболочки бывают их виды и основные консольные команды. Самых распространенных оболочек не много: The Bourne Shell - /bin/sh The Bourne again shell - /bin/bash The Korne shell - /bin/ksh The C shell - /bin/csh Tom’s C shell - /bin/tcsh Наиболее признанной и распространенной оболочкой является bash. Поэтому в дальнейшем и в данной статье мы будем рассматривать именно ее. Посмотрим несколько основных команд: cat вывод содержимого файла в консоль; cd переход в каталог; ls вывод содержимого каталога; echo вывод текста в консоль; touch - обновление времени редактирования файла, а так же данная команда позволяет нам создать новый файл; file справка по файлу; whatis справка по названию; history вывод истории команд; env вывод переменных среды; pwd текущий каталог; export задание переменной; unset - отключение переменной; Для начала можно посмотреть, какая оболочка используется в текущий момент. В большинстве случаев это будет оболочка bash, которая является самой популярной оболочкой и самой используемой. При помощи данной оболочки мы взаимодействуем с операционной системой. Это не просто командная строка, но, а также целая программируемая среда. Со своими сценариями, переменными, со своим синтаксисом, т.е все эти оболочки ведут себя по-разному. Увидеть какую оболочку использует наш конкретный дистрибутив мы можем, посмотрев файл /etc/passwd/ На картинке видно много пользователей, можно увидеть, что пользователь Jenkins использует оболочку /bin/bash/. Это нормальная ситуация для Ubuntu т. к. в данной операционной системе данная оболочка используется по умолчанию. Если нам необходимо мы можем посмотреть глобальные настройки данной оболочки, которые располагаются /etc/profile. В данном файле много настроек, но необходимо знать языки программирования для того, чтобы редактировать файл. Единственное, что интересует в рамках данной стати это PS1 строчки, которые показывают, как должна выглядеть строка-приглашение. Если мы посмотрим, строка приглашение выглядит имя пользователя, тильда, смотря где мы находимся перечисляет нам. Мы можем настроить, каждую новую строчку так, чтобы не показывал имя пользователя, показывал полный путь, относительный путь и еще много чего, хоть пусть туда время выводит. Это уже такая детальная настройка внешнего вида оболочки bash. Если мы перейдем в домашнюю директорию пользователя, то там мы можем найти файл .profile с локальными настройками командной оболочки. Файл в линуксе который начинается с точки, является скрытым. Посмотреть такие файлы можно командой ls a. Ну и посмотрим, что у данного файла есть внутри cat .profile Мы опять видим некий сценарий и ссылку на некий файл ~/.bashrc. В котором уже находятся настройки внешнего вида этой оболочки. Мы так же его можем посмотреть cat .bashrc. Здесь уже более понятные и расширенные настройки, например, сколько хранится история команд, каким шрифтом выделять что-то. Например, мы можем сделать, так чтобы оболочка выделяла путь к файлу определенным цветом, имя пользователя другим цветом и т.д. все это делается в данном файле. Синтаксис в данной статье мы не разбираем. Соответственно можно непосредственно в редакторе редактировать файл, а можно посылать команды, которые будут вносить изменения в данные файлы. Вернемся к вопросу базовых команд. Команда echo выводит информацию в консоль. Синтаксис просто набираем: echo hello и получим в консоли hello. Т.е. командная оболочка, распознает первое слова как команду, а второе как аргумент данной команды. Если нам необходимо вывести в консоль несколько слов подряд, то их необходимо взять в кавычки. Можно выполнить две команды одна за другой, например, echo hello; ls. В данном случае сначала напечатается слово hello, а затем выведется список файлов. Мы можем создать свою команду, привязать команду к какому-нибудь псевдониму внутри оболочки т.е. создать такие ссылки и привязать действующую команду с новой. И новая команда уже будет вызывать команду echo. Для примера возьмем команду storm. При попытке ввода оболочка не понимает и начинает искать команду или исполняемый пакет. Но мы можем создать такой файлик, который будет что-то делать. Есть такая команда cat, она используется для вывода текста из файла на экран. Но она может действовать и в обратную сторону с экрана текст передавать в файл, для этого необходимо изменить направление передачи, например, cat> storm. И теперь все, что мы введем будет внесено в файл storm, опять же для примера echo и случайный набор букв. Затем нажимаем ctrl+c и прерываем ввод. Если мы посмотрим, что сохранилось в файлике storm то мы увидим, все то, что ввели в консоль. Далее сделаем файл storm исполняемым chmod +x storm. Можно видеть, что теперь при просмотре списка файлов командой ls данный файл подсвечивается зеленым, согласно настройкам программной оболочки. Если мы попробуем теперь выполнить команду, которую мы придумали, то опять ничего не выйдет, потому, что у нас оболочка по-умолчанию ищет исполняемые файлы, которые мы пишем, как команды по определенному пути. А все эти пути можно посмотреть в переменных среды. Переменные среды это определённые переменные, которые могут показать определенные настройки текущей операционной системы. Мы данные настройки можем посмотреть командой env. В выводе команды мы можем найти вот такую строчку PATH=/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/usr/games:/usr/local/games Здесь указан путь, по которому будут искаться переменные. Соответственно мы так же можем увидеть и другие настройки его среды, язык, его домашнюю папку и т.д. так как у нас по указанному выше пути ищутся исполняемые файлы мы не можем взять и запустить команду не пойми откуда. Но мы можем ее запустить, используя полный путь к исполняемому файлу. Чтобы посмотреть, где мы находимся, можно воспользоваться командой pwd, она покажет путь. В моем случае /root. У нас получится /root/storm Запустился. Следовательно, команда вывела тот текст, который мы изначально туда поместили. Вот это у нас получается полный путь к файлу /root/storm. Введем еще раз команду ls a. Мы видим скрытые файлы начинающиеся с "." , а так же еще два символа "." и ".." . Первый символ точки - это просто текущая папка. Т.е. если сделать cd . , то мы останемся в текущей директории. А если cd .. то это означает подняться на уровень выше по иерархии каталогов в файловой системе. Можно обнаружить, что при нахождении в домашней папке /root, под пользователем root, мы видим значок домашней папке ~. Это происходит потому, что в переменных для данного пользователя данная папка прописана, как домашняя. Теперь с учетом выше сказанного можно запустить нашу команду более кратко ./storm Это называется путь из текущей папки, где "." указывает на текущую папку. Таким образом мы можем запускать файлы. Еще раз вернемся к переменным среды. Например, мы можем добавить переменную ABC = 123, т.е. мы задали символьной последовательности ABC значение 123. Пока это не переменная, мы просто задали слову число. Чтобы это превратить в переменную есть команда export. Воспользуемся export ABC. И мы видим, что наша переменная добавилась. Теперь можно с данной переменной работать, например, можно ее указывать в качестве аргумента какой-либо команды. Например, echo $ABC, здесь "$" указывает, что мы обращаемся к переменной. В результате появится на экране 123. Мы можем отменить данную переменную, командой unset ABC. Снова смотрим перечень переменных env и видим, что переменная ABC исчезла. Можем поработать с другой переменной среды PATH. Например написать "PATH=$PATH:." , т.е. к текущему значению $PATH мы через двоеточие, как это показано в выводе команды env добавляем текущую папку в виде точки. Это означает, что у меня теперь будут запускаться файлы из той директории, которая обозначена точкой. Директорию, в которой находимся можно посмотреть pwd. Групповые символы: Создадим несколько файлов с помощью команды touch. Если мы хотим вывести файлы, которые заканчиваются на txt, мы вводим ls *.txt. Т.е. значок звездочки заменяет любое количество символов. Возможен, например, еще такой вариант команды, мы получим аналогичный результат ls *.t* Есть значок вопросительного знака, который заменяет только один символ. Работает по аналогии выше. Можно запросить информацию о диапазоне. Например, ls [1-4].txt, результатом вывода данной команды будет 4 файла. Все эти символы можно комбинировать. Мы можем создать некую последовательность. Например, touch {6,7,8}.txt соответственно созданы 3 файла, 6.txt, 7.txt, 8.txt. Символов достаточно много, но вот эти самые основные. Справочные команды Команда uname показывает какая операционная система. Ну я думаю и так, всем понятно, что Linux. Если ввести с ключиком a, то мы получим более информативный вариант Linux jenkins 5.4.0-45-generic #49-Ubuntu SMP Wed Aug 26 13:38:52 UTC 2020 x86_64 x86_64 x86_64 GNU/Linux. Плюс дополнительные параметры, версия, издание и другое. Команда File на примере нашего файла storm. Мы можем увидеть, что данный файл - это обычный текст. Есть еще справочная похожая команда whatis запрос. Команда history - показывает историю ввода команд. Чтобы повторить, какую-нибудь команду можно двигать стрелочкой вверх на клавиатуре, а также можно перебирать стрелочкой вниз. Когда мы используем данный функционал, мы как раз двигаемся по истории команд. Еще полезный функционал, если написать пару символов и нажать дважды кнопку табуляции, то операционная система постарается дописать команду или файл, или выдаст возможные варианты, если вариантов нет просто допишется название файла или команды. И самая, пожалуй, важная команда это команда man, она позволяет открывать мануалы по той или иной команде.
img
Иногда возникает необходимость постоянно заходить в определенную папку и работать с конкретной группой файлов. Для облегчения этой работы, в Ubuntu можно изменить отображаемое содержимое рабочего стола. Операционная система Ubuntu разрешает вам, какие файлы будут отображаться на вашем рабочем столе, даже если они не находятся в папке рабочего стола. Вы можете обладаеть большими возможностями по управлению рабочим столом в Ubuntu, чем это предлагает система по умолчанию. В этой статье мы рассмотрим, что может отображаться на рабочем столе по умолчанию и как это можно изменить. Большинство рабочих столов Linux предстают перед нами очаровательно лаконичными. Они отображают несколько ярлыков на красивом фоне. К ним относятся значки для запуска приложений, находящиеся обычно в левой или нижней части экрана, и, возможно, еще один или два значка в открытой области. В статье использовалась Ubuntu версии 21.02 (Hirsute Hippo). Лаконичный рабочий стол - это даже очень прекрасно. Вы можете открывать папки с помощью файлового менеджера и переходить к любой группе файлов, которые вам нужно использовать или обновить. Однако, изменив один параметр в Ubuntu (и связанных дистрибутивах), вы также сможете настроить свою систему для открытия каталога с указанным набором файлов на месте рабочего стола, и вам не надо будет для этого перемещать их в папку рабочего стола. Чтобы понять, как все это работает, откройте окно терминала и перейдите в каталог с именем .config. Содержимое файла user-dirs.dirs будет выглядеть примерно так: Вот первый параметр в этом файле, XDG_DESKTOP_DIR, и определяет, какие файлы будут отображаться в открытой области на вашем рабочем столе. По умолчанию это будет содержимое папки рабочего стола (т.е. ~/Desktop). Вы можете изменить этот параметр, если хотите чтобы выводился ваш домашний каталог или содержимое какого-либо другого каталога в вашей системе - возможно, файлы, связанные с каким-то проектом, на котором вы работатете. Но прежде чем вносить изменения в файл, сделаем его копию с помощью команды: $ cp user-dirs.dirs user-dirs.dirs.backup В конце концов, вы, возможно, в какой-то момент захотите вернуться к стандартному виду рабочего стола, и это решение с созданием копии файла, упростит задачу. После того, как вы заменили $HOME/Desktop на $HOME, $HOME/MyDela, /projectmy или даже $HOME/empty, то при следующем обновлении экрана или при входе в систему должны отображаться файлы из выбранного места. Эффект не будет сильно отличаться от открытия файлового менеджера в конкретном месте, но может но вы сразу же окажитесь в нужной вам папке. Другие настройки Как вы могли заметить, что в файле user-dirs.dirs есть и другие настройки. Часть этих настроек, вероятно, используются различными приложениями. Можете поэкспериментировать с ними.
img
Определение проблемного пространства Сетевые инженеры часто сталкиваются с проблемой слишком большого трафика для слишком малого канала связи. В частности, почти в каждом пути через сеть одно звено ограничивает весь путь, так же как один перекресток или одна дорога ограничивает поток трафика. Рисунок ниже иллюстрирует это. На рисунке A обменивается данными с G, а B обменивается данными с E. Если каждая из этих пар устройств использует близкую к доступной полосе пропускания на своих локальных каналах ([A, C], [B, C], [F, G] и D, E]), предполагая, что все каналы имеют одинаковую скорость, канал [C, D] будет перегружен трафиком, превратившись в узкую точку в сети. Когда канал перегружен, например канал [C, D] на рисунке ниже, по каналу будет отправлено больше трафика, чем пропускная способность канала. Во время перегрузки сетевое устройство, такое как маршрутизатор или коммутатор, должно определять, какой трафик следует перенаправить, какой отбросить и в каком порядке следует пересылать пакеты. Для решения этой проблемы были созданы различные схемы приоритезации. Управление перегрузкой каналов путем приоритизации одних классов трафика над другими входит в широкий раздел качества обслуживания (QoS). Восприятие QoS среди сетевых инженеров вызывает беспокойство по многим причинам. Например, многие реализации, даже недавние, как правило, не так хорошо продуманы, как могли бы быть, особенно в том, как они настроены и поддерживаются. Кроме того, ранние схемы не всегда работали хорошо, и QoS часто может добавить проблем в сети, а не облегчить их, и, как правило, очень трудно устранить неполадки. По этим причинам, а также из-за того, что конфигурация, необходимая для реализации схем приоритезации, имеет тенденцию к непостижимости, QoS часто считается темным искусством. Чтобы успешно реализовать стратегию QoS, вы должны классифицировать трафик, определить стратегию организации очередей для различных классов трафика и согласованно установить стратегию на всех сетевых устройствах, которые могут испытывать перегрузку каналов. Хотя можно погрузиться во множество различных функций и функций схем и реализаций QoS, результат всегда должен быть одним и тем же. Почему бы просто не сделать линии связи достаточно большими? После обдумывания ценностного предложения QoS очевидной реакцией будет вопрос, почему сетевые инженеры просто не выбирают достаточно большие линии связи, чтобы избежать перегрузки. В конце концов, если бы линии связи были достаточно большими, перегрузка исчезла бы. Если перегрузка исчезнет, исчезнет необходимость отдавать приоритет одному типу трафика над другим. Весь трафик будет доставлен, и все эти досадные проблемы, связанные с недостаточной пропускной способностью, будут устранены. Действительно, избыточное выделение ресурсов, возможно, является лучшим QoS из всех. К сожалению, стратегия избыточного обеспечения не всегда является доступным вариантом. Даже если бы это было так, самые большие доступные каналы связи не могут преодолеть определенные модели трафика. Некоторые приложения будут использовать столько пропускной способности, сколько доступно при передаче данных, создавая точку перегрузки для других приложений, совместно использующих линию связи. Другие будут передавать в микроперерывах, подавляющих сетевые ресурсы в течение короткого времени, и некоторые транспортные механизмы-такие как протокол управления передачей (TCP)-будут намеренно собирать путь время от времени, чтобы определить наилучшую скорость передачи данных. В то время как более крупная линия связи может сократить время существования состояния перегрузки, в некоторых сценариях нет такой вещи, как наличие достаточной полосы пропускания для удовлетворения всех требований. Большинство сетей построены на модели избыточной подписки, когда некоторая совокупная пропускная способность распределяется в определенных узких местах. Например, коммутатор Top of Rack (ToR) в загруженном центре обработки данных может иметь 48 портов 10GbE, обращенных к хостам, но только 4 порта 40GbE, обращенных к остальной части центра обработки данных. Это приводит к коэффициенту переподписки 480:160, который уменьшается до 3:1. Неявно, 160 Гбит/с полосы пропускания центра обработки данных является потенциальным узким местом - точкой перегрузки - для 480 Гбит/с полосы пропускания хоста. И все же соотношение переподписки 3:1 является обычным явлением в схемах коммутации центров обработки данных. Зачем? Окончательный ответ - часто деньги. Часто можно спроектировать сеть, в которой граничные порты соответствуют доступной пропускной способности. Например, в структуре центра обработки данных, приведенной выше, почти наверняка можно добавить достаточную пропускную способность канала, чтобы обеспечить 480 Гбит / с из ToR в структуру, но стоимость вполне может быть непомерно высокой. Сетевой инженер должен учитывать не только стоимость порта и оптоволокна, но и стоимость дополнительного питания, а также стоимость дополнительного охлаждения, необходимого для управления окружающей средой после добавления необходимых дополнительных устройств, и даже затраты дополнительного места в стойке и веса пола. Затраты денег на обеспечение более высокой пропускной способности сети также могут быть трудно оправданы, если сеть редко перегружена. Некоторые события перегрузки не являются достаточно частыми, чтобы оправдать дорогостоящее обновление сети. Будет ли город тратить миллионы или миллиарды долларов на улучшение транспортной инфраструктуры, чтобы облегчить движение раз в год, когда политик приезжает с визитом? Нет. Вместо этого для решения проблемы с трафиком вносятся другие корректировки. Например, компании могут наиболее остро столкнуться с этим ограничением в глобальных сетях, где каналы арендуются у поставщиков услуг (SP). Частично поставщики услуг зарабатывают деньги на объединении разрозненных географических регионов для организаций, которые не могут позволить себе прокладывать и использовать оптоволоконные кабели большой протяженности самостоятельно. Эти линии дальней связи обычно предлагают гораздо более низкую пропускную способность, чем более короткие, местные линии связи в одном кампусе или даже в одном здании. Высокоскоростное соединение в университетском городке или центре обработки данных может легко перегрузить более медленные каналы дальней связи. Организации будут устанавливать максимально возможные размеры дальних (таких как межсайтовые или даже межконтинентальные) линий связи, но, опять же, важно помнить о деньгах. В мире избыточной подписки и последующих точек перегруженности, а также временных моделей трафика, которые требуют тщательного управления, схемы приоритизации трафика QoS всегда будут необходимы. Классификация Схемы приоритизации QoS действуют на различные классы трафика, но что такое класс трафика и как он определяется? Классы трафика представляют собой агрегированные группы трафика. Потоки данных из приложений, требующих аналогичной обработки или представляющих аналогичные схемы трафика в сети, помещаются в группы и управляются политикой QoS (или классом обслуживания, CoS). Эта группировка имеет решающее значение, поскольку было бы трудно определить уникальные политики QoS для потенциально бесконечного числа приложений. С практической точки зрения сетевые инженеры обычно группируют трафик в четыре класса. Конечно, возможны и другие классы, и такие схемы существуют в производственных сетях. Однако управление системой классификации и политическими действиями становится все более утомительным по мере того, как число классов превышает четыре. Каждый пакет может быть отнесен к определенной CoS на основе адреса источника, адреса назначения, порта источника, порта назначения, размера пакета и других факторов. Предполагая, что каждое приложение имеет свой собственный профиль или набор характеристик, каждое приложение может быть помещено в определенный CoS и действовать в соответствии с локальной политикой QoS. Проблема с этим методом классификации трафика заключается в том, что классификация является только локально значимой-действие классификации относится только к устройству, выполняющему классификацию. Такая классификация пакетов требует много времени, а обработка каждого пакета потребует больших вычислительных ресурсов. Поэтому лучше не повторять эту обработку на каждом устройстве, через которое проходит пакет. Вместо этого лучше один раз классифицировать трафик, пометить пакет в этой единственной точке и действовать в соответствии с этой маркировкой на каждом последующем переходе в сети. Примечание: Несмотря на то, что пакеты и кадры в сети различны, в этой статье будет использоваться термин пакеты. Были разработаны и стандартизированы различные схемы маркировки, такие как 8-битное поле типа обслуживания (ToS), включенное в заголовок Интернет-протокола версии 4 (IPv4). Версия 6 того же протокола (IPv6) включает 8-битовое поле класса трафика, служащее аналогичной цели. Кадры Ethernet используют 3-битное поле как часть спецификации 802.1p. На рисунке показано поле ToS IPv4. В наилучшей сетевой практике классификация трафика должна приводить к одному действию и только к одному действию-маркировке. Когда пакет помечен, присвоенное значение может сохраняться и действовать на протяжении всего пути следования пакета по сетевому пути. Классификация и последующая маркировка должны быть "одноразовым" событием в жизни пакета. Лучшая практика QoS - рекомендуется маркировать трафик, как близко к источнику, насколько это возможно. В идеале трафик будет помечен в точке входа в сеть. Например, трафик, поступающий в сетевой коммутатор с персонального компьютера, телефона, сервера, устройства Интернета вещей и т. д. будет помечена, и метка будет служить классификатором трафика на пути следования пакета по сети. Альтернативная схема классификации и маркировки трафика входящим сетевым устройством заключается в том, что приложение само маркирует свой собственный трафик. Другими словами, пакет отправляется с уже заполненным байтом ToS. Это поднимает проблему доверия. Следует ли разрешить приложению ранжировать собственную важность? В худшем случае все приложения эгоистично помечают свои пакеты значениями, указывающими наивысшую возможную важность. Если каждый пакет помечен как очень важный, то на самом деле ни один пакет не является особо важным. Чтобы один пакет был более важным, чем любой другой, должна быть дифференциация. Классы трафика должны иметь разные уровни важности, чтобы схемы приоритезации QoS имели какое-либо значение. Для сохранения контроля над классификацией трафика все сети, реализующие QoS, имеют границы доверия. Границы доверия позволяют сети избежать ситуации, когда все приложения помечают себя как важные. Представьте, что произошло бы на перегруженной дороге, если бы у каждого автомобиля были мигающие аварийные огни - действительно важные автомобили не выделялись бы. В сети некоторым приложениям и устройствам доверяют отмечать свой собственный трафик. Например, IP-телефонам обычно доверяют соответствующим образом маркировать свой потоковый голосовой трафик и трафик протокола управления, то есть метки, которые IP-телефоны применяют к своему трафику, принимаются входным сетевым устройством. Другие конечные точки или приложения могут быть ненадежными, что означает, что байт ToS пакета стирается или перезаписывается при входе. По умолчанию большинство сетевых коммутаторов стирают метки, отправленные им, если они не настроены на доверие определенным устройствам. Например, производителям, помещенным в пакет сервером, часто доверяют, а маркировкам, установленным конечным хостом, - нет. На рисунке ниже показана граница доверия. На рисунке 3 пакеты, передаваемые B, помечены AF41. Поскольку эти пакеты исходят от хоста в домене доверия QoS, маркировка остается, пока они проходят через D. Пакеты, исходящие от A, помечаются EF; однако, поскольку A находится за пределами доверенного домена QoS, эта маркировка удаляется в D. Пакеты в пределах доверенного домена, исходящие из A, рассматриваются как немаркированные с точки зрения QoS. Маркировка протокола физического уровня и верхнего уровня может быть связана, а может и не быть. Например, маркировка верхнего уровня может быть скопирована в маркировку нижнего уровня, или маркировка нижнего уровня может быть перенесена через сеть, или маркировка нижнего уровня может быть удалена. Существует множество различных возможных реализаций, поэтому вы должны быть осторожны, чтобы понять, как маркировка обрабатывается на разных уровнях, а также на каждом переходе. Хотя операторы сети могут использовать любые значения, которые они выбирают в байте ToS для создания различных классов трафика, часто лучше придерживаться некоторых стандартов, таких как значения, определенные стандартами IETF RFC. Эти стандарты были определены для того, чтобы дать сетевым инженерам логическую схему, позволяющую надлежащим образом различать множество различных классов трафика. Две из этих схем "Per Hop Behavior" появляются в RFC2597, Assured Forwarding (AF), и RFC3246, Expedited Forwarding (EF), а также в различных других RFC, обновляющих или уточняющих содержание этих основополагающих документов. Оба эти RFC определяют схемы маркировки трафика, включая точные значения битов, которые должны заполнять байт ToS или байт класса трафика IP-заголовка, чтобы указать конкретный тип трафика. Они известны как точки кода дифференцированного обслуживания или значения DSCP. Например, схема гарантированной пересылки RFC2597 определяет 12 значений в побитовой иерархической схеме для заполнения восьми битов в поле байта ToS. Первые три бита используются для идентификации класса, а вторые три бита определяют приоритет отбрасывания. Последние два бита не используются. Таблица 1 иллюстрирует маркировку кода для нескольких классов AF. В таблице 1 показано значение бита DSCP для AF11, трафика класса 1 с низким приоритетом отбрасывания, равным 001 010, где "001" обозначает класс 1, а "010" обозначает приоритет отбрасывания. Изучение таблицы более глубоко раскрывает бинарный паттерн, выбранный авторами RFC. Весь трафик класса 1 помечается 001 в первых трех битах, весь класс 2-010 в первых трех битах и т. д. Весь трафик с низким приоритетом отбрасывания помечается 010 во-вторых трех битах, весь трафик со средним приоритетом отбрасывания-100 во-вторых трех битах и т. д. Схема гарантированной пересылки показана в таблице 2 для примера. Это не исчерпывающий список кодовых точек, используемых при классификации трафика QoS. Например, схема выбора класса, описанная в RFC2474, существует для обратной совместимости со схемой маркировки приоритета IP. Приоритет IP использует только первые три бита байта ToS, всего восемь возможных классов. Селектор классов также использует восемь значений, заполняя первые три бита шестибитового поля DSCP значимыми значениями (соответствующими устаревшей схеме приоритета IP), а последние три бита - нулями. В таблице 2 показаны эти селекторы классов. RFC3246 определяет требования к задержке, потерям и джиттеру трафика, который должен быть перенаправлен быстро, вместе с единственной новой кодовой точкой - EF, которой присвоено двоичное значение 101 110 (десятичное 46). Количество и разнообразие формально определенных значений DSCP может показаться ошеломляющим. Комбинированные определения AF, CS и EF сами по себе приводят к формальным определениям для 21 различных классов из возможных 64, использующих шесть битов поля DSCP. Ожидается ли, что сетевые инженеры будут использовать все эти значения в своих схемах приоритезации QoS? Следует ли разбивать трафик с такой высокой степенью детализации для эффективного QoS? На практике большинство схем QoS ограничиваются от четырех до восьми классов трафика. Различные классы позволяют обрабатывать каждую группу по-своему во время перегрузки. Например, один класс трафика может быть сформирован так, чтобы соответствовать определенному порогу пропускной способности. Другой класс трафика может иметь приоритет над всем остальным трафиком. Еще один может быть определен как критически важный для бизнеса или трафик, который важнее большинства, но менее важен, чем некоторые. Трафик сетевого протокола, критичный для стабильности инфраструктуры, можно рассматривать как очень высокий приоритет. Класс трафика scavenger может находиться в конце списка приоритетов, получая немного больше внимания, чем немаркированный трафик. Схема, включающая эти значения, вероятно, будет представлять собой сочетание кодовых точек, определенных в различных RFC, и может несколько отличаться от организации к организации. Обычно принятые значения включают EF для критического трафика с требованием своевременности, например VoIP, и CS6 для трафика управления сетью, такого как протоколы маршрутизации и резервирования на первом этапе. Немаркированный трафик (т.е. значение DSCP, равное 0) доставляется по принципу "максимальных усилий", без каких-либо гарантий уровня обслуживания (обычно это считается классом scavenger, как указано выше).
ВЕСЕННИЕ СКИДКИ
40%
50%
60%
До конца акции: 30 дней 24 : 59 : 59