По вашему запросу ничего не найдено :(
Убедитесь, что запрос написан правильно, или посмотрите другие наши статьи:
img
Система хранения данных - это программно-аппаратное решение для надежного и безопасного хранения данных, а также предоставления гарантированного доступа к ним. Так, под надежностью подразумевается обеспечение сохранности данных, хранящихся в системе. Такой комплекс мер, как резервное копирование, объединение накопителей в RAID массивы с последующим дублированием информации способны обеспечить хотя бы минимальный уровень надежности при относительно низких затратах. При этом также должна обеспечиваться доступность, т. е. возможность беспрепятственной и непрерывной работы с информацией для санкционированных пользователей. В зависимости от уровня привилегий самих пользователей, система предоставляет разрешение для выполнения операций чтения, записи, перезаписи, удаления и так далее. Безопасность является, пожалуй, наиболее масштабным, важным и труднореализуемым аспектом системы хранения данных. Объясняется это тем, что требуется обеспечить комплекс мер, направленный на сведение риска доступа злоумышленников к данным к минимуму. Реализовать это можно использованием защиты данных как на этапе передачи, так и на этапе хранения. Также важно учитывать возможность самих пользователей неумышленно нанести вред не только своим, но и данным других пользователей. Топологии построения систем хранения данных Большинство функции, которые выполняют системы хранения данных, на сегодняшний день, не привязаны к конкретной технологии подключения. Описанные ниже методы используется при построении различных систем хранения данных. При построении системы хранения данных, необходимо четко продумывать архитектуру решения, и исходя из поставленных задач учитывать достоинства и недостатки, присущие конкретной технологии в конкретной ситуации. В большинстве случаев применяется один из трех видов систем хранения данных: DAS; NAS; SAN. DAS (Direct-attached storage) - система хранения данных с прямым подключением (рисунок ниже). Устройство хранения (обычно жесткий диск) подключается непосредственно к компьютеру через соответствующий контроллер. Отличительным признаком DAS является отсутствие какого-либо сетевого интерфейса между устройством хранения информации и вычислительной машиной. Система DAS предоставляет коллективный доступ к устройствам хранения, однако для это в системе должно быть несколько интерфейсов параллельного доступа. Главным и существенным недостатком DAS систем является невозможность организовать доступ к хранящимся данным другим серверам. Он был частично устранен в технологиях, описанных ниже, но каждая из них привносит свой новый список проблем в организацию хранения данных. NAS (Network-attached storage) - это система, которая предоставляет доступ к дисковому пространству по локальной сети (рисунок выше). Архитектурно, в системе NAS промежуточным звеном между дисковым хранилищем и серверами является NAS-узел. С технической точки зрения, это обычный компьютер, часто поставляемый с довольно специфической операционной системой для экономии вычислительных ресурсов и концентрации на своих приоритетных задачах: работы с дисковым пространством и сетью. Дисковое пространство системы NAS обычно состоит из нескольких устройств хранения, объединенных в RAID - технологии объединения физических дисковых устройств в логический модуль, для повышения отказоустойчивости и производительности. Вариантов объединения довольно много, но чаще всего на практике используются RAID 5 и RAID 6 [3], в которых данные и контрольные суммы записываются на все диски одновременно, что позволяет вести параллельные операции записи и чтения. Главными преимуществами системы NAS можно назвать: Масштабируемость - увеличение дискового пространства достигается за счет добавления новых устройств хранения в уже существующий кластер и не требует переконфигурации сервера; Легкость доступа к дисковому пространству - для получения доступа не нужно иметь каких-либо специальных устройств, так как все взаимодействие между системой NAS и пользователями происходит через сеть. SAN (Storage area network) - система, образующая собственную дисковую сеть (рисунок ниже). Важным отличием является то, что с точки зрения пользователя, подключенные таким образом SAN-устройства являются обычными локальными дисками. Отсюда и вытекают основные преимущества системы SAN: Возможность использовать блочные методы хранения - базы данных, почтовые данные, Быстрый доступ к данным - достигается за счет использования соответствующих протоколов. Системы резервного копирования данных Резервное копирование - процесс создания копии информации на носителе, предназначенном для восстановления данных в случае их повреждения или утраты. Существует несколько основных видов резервного копирования: Полное резервное копирование; Дифференциальное резервное копирование; Инкрементное резервное копирование. Рассмотрим их подробнее. Полное резервное копирование. При его применении осуществляется копирование всей информации, включая системные и пользовательские данные, конфигурационные файлы и так далее (рисунок ниже). Дифференциальное резервное копирование. При его применении сначала делается полное резервное копирование, а впоследствии каждый файл, который был изменен с момента первого полного резервного копирования, копируется каждый раз заново. На рисунке ниже представлена схема, поясняющая работу дифференциального резервного копирования. Инкрементное резервное копирование. При его использовании сначала делается полное резервное копирование, затем каждый файл, который был изменен с момента последнего резервного копирования, копируется каждый раз заново (рисунок ниже). К системам резервного копирования данных выдвигаются следующие требования: Надежность - обеспечивается использованием отказоустойчивого оборудования для хранения данных, дублированием информации на нескольких независимых устройствах, а также своевременным восстановлением утерянной информации в случае повреждения или утери; Кроссплатформенность - серверная часть системы резервного копирования данных должна работать одинаково с клиентскими приложениями на различных аппаратно-программных платформах; Автоматизация - сведение участие человека в процессе резервного копирования к минимуму. Обзор методов защиты данных Криптография - совокупность методов и средств, позволяющих преобразовывать данные для защиты посредством соответствующих алгоритмов. Шифрование - обратимое преобразование информации в целях ее сокрытия от неавторизованных лиц. Признаком авторизации является наличие соответствующего ключа или набора ключей, которыми информация шифруется и дешифруется. Криптографические алгоритмы можно разделить на две группы: Симметричное шифрование; Асимметричное шифрование. Под симметричным шифрованием понимаются такие алгоритмы, при использовании которых информация шифруется и дешифруется одним и тем же ключом. Схема работы таких систем представлена на рисунке ниже. Главным проблемным местом данной схемы является способ распределения ключа. Чтобы собеседник смог расшифровать полученные данные, он должен знать ключ, которым данные шифровались. Так, при реализации подобной системы становится необходимым учитывать безопасность распределения ключевой информации для того, чтобы на допустить перехвата ключа шифрования. К преимуществам симметричных криптосистем можно отнести: Высокая скорость работы за счет, как правило, меньшего числа математических операций и более простых вычислений; Меньшее потребление вычислительной мощности, в сравнении с асимметричными криптосистемами; Достижение сопоставимой криптостойкости при меньшей длине ключа, относительно асимметричных алгоритмов. Под асимметричным шифрованием понимаются алгоритмы, при использовании которых информация шифруется и дешифруется разными, но математически связанными ключами - открытым и секретным соответственно. Открытый ключ может находится в публичном доступе и при шифровании им информации всегда можно получить исходные данные путем применения секретного ключа. Секретный ключ, необходимый для дешифрования информации, известен только его владельцу и вся ответственность за его сохранность кладется именно на него. Структурная схема работы асимметричных криптосистем представлена на рисунке ниже. Ассиметричные криптосистемы архитектурно решают проблему распределения ключей по незащищенным каналам связи. Так, если злоумышленник перехватит ключ, применяемый при симметричном шифровании, он получит доступ ко всей информации. Такая ситуация исключена при использовании асимметричных алгоритмов, так как по каналу связи передается лишь открытый ключ, который в свою очередь не используется при дешифровании данных. Другим местом применения асимметричных криптосистем является создание электронной подписи, позволяющая подтвердить авторство на какой-либо электронный ресурс. Достоинства асимметричных алгоритмов: Отсутствует необходимость передачи закрытого ключа по незащищенного каналу связи, что исключает возможность дешифровки передаваемых данных третьими лицами, В отличии от симметричных криптосистем, в которых ключи шифрования рекомендуется генерировать каждый раз при новой передаче, в асимметричной их можно не менять продолжительное время. Подведём итоги При проектировании таких систем крайне важно изначально понимать какой должен получиться результат, и исходя из потребностей тщательно продумывать физическую топологию сети хранения, систему защиты данных и программную архитектуру решения. Также необходимо обеспечить резервное копирование данных для своевременного восстановления в случае частичной или полной утери информации. Выбор технологий на каждом последующем этапе проектирования, зачастую, зависит от принятых ранее решений, поэтому корректировка разработанной системы в таких случаях, нередко, затруднительна, а часто даже может быть невозможно.
img
В данной статье рассмотрим процесс настройки интеграции ip-телефонии Asterisk и CRM Битрикс24 посредством модуля интеграции Itgrix (ранее называлось bx24asterisk). Перечислим возможности которые станут доступны после настройки данной интеграции: В момент вызова открывается карточка клиента с именем и информацией о текущих сделках с этим клиентом. Автоматически создается лид для неизвестного номера. Для лида или контакта в CRM создается дело (оно же звонок), в нем можно прослушать запись разговора и увидеть его длительность. Можно указать разные источники лидов для сквозной аналитики, в зависимости от того на какой из номеров телефона вам позвонили. Автоматическое направление входящих вызовов на ответственного за клиента сотрудника. Модуль состоит из двух частей: портальное приложение и серверное приложение, которое нужно установить на сервер с Asterisk. Установка приложения в Битрикс Заходим в меню Приложения, в поиске набираем Астериск, находим приложение Интеграция с Asterisk от компании Айтигро. Кликаем по названию приложения, нажимаем Попробовать, соглашаемся с лицензионным соглашением и политикой конфиденциальности и нажимаем Установить. После установки появится окно входа в настройки модуля, пока закроем его, ведь у нас еще нет серверной части приложения. Заходим в Приложения - переходим на вкладку Установленные, находим там приложение Интеграция с Asterisk, нажимаем на кнопку Права доступа, выбираем раздел Другое, добавляем роль Все авторизованные пользователи, нажимаем Выбрать. Установка приложения на сервер Asterisk. Заходим на сервер по ssh, скачиваем скрипт установки модуля интеграции wget 'https://bx24asterisk.ru/download/autoinstaller.sh' Запускаем скрипт командой: bash autoinstaller.sh Cкрипт сам определит разрядность системы и установит подходящую версию. В конце установки нужно будет ввести логин и пароль для дальнейшего входа в web интерфейс с настройками модуля. Дальнейшую установку можно производить из web интерфейса доступного по адресу https://ipasterisk:8078/config/master При входе в web интерфейс нужно ввести логин и пароль который мы указали при установке приложения на сервер. Выбираем язык Данные для подключения к базе данных модуль найдет и подставит сам, нажимаем проверить Warning в графе CEL означает что в таблицу CEL больше часа не записывались события звонков, такое может быть либо, если запись вCEL не осуществляется Asterisk’ом и нужно это настроить, либо просто давно не было звонков. Далее подключаемся к Asterisk. Выбираем существующего пользователя либо создаем Нового. Через него модуль будет взаимодействовать с AMI Asterisk’а. Для нового - вводим пароль для пользователя bx24, модуль сам создаст пользователя. Проверяем. Указываем где и в каком формате хранятся файлы записей Указываем данные для подключения к порталу Битрикс24. Учетная запись должна обладать правами администратора в портале, через нее модуль будет работать с Битрикс24. Проверяем. Далее описываем часть логики в Битрикс24 Указываем параметры логики CRM. В зависимости от того, в каком режиме у Вас работает CRM (с лидами или без). Указываем как будем осуществлять звонки кликами по номеру в CRM: Использовать Click2call сервер - команды для звонков будут передаваться на модуль через сервер разработчика; Либо можно указать внешний ip адрес Asterisk (адрес роутера, за которым находится Asterisk) и пробросить порт 8077 до сервера с Asterisk. Команда из Битрикса на будет передавать на этот порт и обрабатываться модулем. Сохраняем. Попадаем на страницу с результатами всех проверок Другая часть бизнес-логики В результате должно получиться вот так: при входящем или исходящем звонке показывается карточка звонка: После завершения звонка в лиде создается звонок. При пропущенном входящем звонке создается задача.
img
Настройка OSPF (Open Shortest Path First) довольна проста и чем-то похожа на протоколы маршрутизации RIP и EIGRP, то есть состоит из двух основных шагов: включения протокола глобальной командой router ospf PROCESS_NUMBER; выбора сетей, которые протокол будет «вещать», для чего используется команда(ы) network 255.255.255.255 0.0.0.255 AREA_NUMBER; Как сразу заметно, в OSPF появляется указание «зоны» - area. Первая команда включения говорит сама за себя, но поясним про PROCESS_NUMBER и AREA_NUMBER – это номер процесса и номер зоны соответственно. Для установления соседства номер процесса OSPF не должен быть одинаковым, но обязательно должен совпадать номер зоны. Интерфейсы и сети указываем через обратную маску. Видео: протокол OSPF (Open Shortest Path First) за 8 минут Пример настройки OSPF В нашей топологии у маршрутизаторов R1 и R2 есть напрямую подключенные подсети. Нам нужно включить данные подсети в процесс динамической маршрутизации OSPF. Для этого нам сначала нужно включить OSPF на обоих маршрутизаторах и затем «вещать» данные сети с помощью команды network. На маршрутизаторах переходим в глобальный режим конфигурации и вводим следующие команды, в соответствии с нашей схемой: router ospf 1 network 10.0.1.0 0.0.0.255 area 0 network 172.16.0.0 0.0.255.255 area 0 router ospf 1 network 192.168.0.0 0.0.0.255 area 0 network 172.16.0.0 0.0.255.255 area 0 Далее нам нужно проверить, заработала ли динамическая маршрутизация, и для этого используем команды show ip ospf neighbors и show ip route Вот и все – также просто, как и настроить RIP: главное не забывать указывать одинаковый номер автономной системы. Первая команда должна показать «соседа» - на обоих маршрутизаторах убедитесь, что там указан адрес другого маршрутизатора в выводе данной команды. Вторая команда выведет таблицу маршрутизации, и, маршруты, получаемые по OSPF, будут отмечены буквой O. Второй сценарий настройки OSPF По первому примеру видно, что настройка OSPF довольна проста. Однако, этот протокол маршрутизации имеет довольно много разнообразных фич, которые сильно усложняют процесс настройки, но и делают OSPF очень гибким протоколом. В нашем примере мы настроим мультизонный (multiarea) OSPF с некоторыми дополнительными функциями. В нашем примере у нас есть две зоны OSPF, area 0 и area 1. Как видно на схеме, маршрутизаторы R1 и R2 находятся в зоне 0, и R2 и R3 в зоне 1. Так как R2 соединяет две зоны, он становится ABR – Area Border Router (граничным маршрутизатором). Нашей задачей является вещание подсетей, напрямую подключенных к R1 и R3. Для этого, на R1 введем следующую команду: router ospf 1 network 10.0.1.0 0.0.0.255 area 0 network 172.16.0.0 0.0.255.255 area 0 router-id 1.1.1.1 Мы вручную указали идентификатор маршрутизатора, и теперь процесс OSPF будет использовать данный RID при общении с другими OSPF соседями. Так как R1 подключен только к R2, нам необходимо установить соседство с R2 и вещать напрямую подключенные сети через OSPF. Настройки на R3 выглядят такими же, как на R1, но с другим номером зоны. router ospf 1 network 192.168.0.0 0.0.0.255 area 1 network 90.10.0.0 0.0.0.255 area 1 router-id 3.3.3.3 Теперь перейдем к настройке R2 – так как он является граничным маршрутизатором, необходимо установить соседство и с R1 и с R3. Для этого, нам необходимо настроить отдельное соседство для каждой зоны – 0 для R1 и 1 для R2. router ospf 1 network 172.16.0.0 0.0.255.255 area 0 network 192.168.0.0 0.0.0.255 area 1 router-id 2.2.2.2 Для проверки используем команды show ip ospf neighbor и show ip route ospf на маршрутизаторах R1 и R3. Буквы IA означают, что данные маршруты находятся в разных зонах. Так как R1 и R3 находятся в разных зонах, между ними никогда будет соседства.
ВЕСЕННИЕ СКИДКИ
40%
50%
60%
До конца акции: 30 дней 24 : 59 : 59