По вашему запросу ничего не найдено :(
Убедитесь, что запрос написан правильно, или посмотрите другие наши статьи:
img
Переменные окружения (или переменные среды) - это набор пар ключ-значение, которые хранятся в вашем Linux и используются процессами для выполнения определенных операций. Они отвечают за стандартное поведение системы и приложений. При взаимодействии с вашим сервером через сеанс оболочки, есть много информации, которую ваша оболочка обрабатывает, чтобы определить ее поведение и доступы. Некоторые из этих параметров содержатся в настройках конфигурации, а другие определяются пользовательским вводом. Оболочка отслеживает все эти параметры и настройки через окружение. Окружение - это область, которую оболочка создает каждый раз при запуске сеанса, содержащего переменные, определяющие системные свойства. Например, это может быть часовой пояс в системе, пути к определенным файлам, приложения по-умолчанию, локали и многое другое. Переменные окружения также могут использоваться в программах оболочки или в подоболочках для выполнения различных операций. В этом руководстве мы расскажем, как просматривать, устанавливать и сбрасывать переменные окружения в вашей системе. Переменные окружения и переменные оболочки Переменные имеют следующий формат: KEY=value KEY="Some other value" KEY=value1:value2 Должны соблюдаться следующие правила: Имена переменных чувствительны к регистру (регистрозависимы). Переменные окружения должны быть написаны большими буквами (UPPER CASE). Несколько значений переменных разделяются двоеточием : Вокруг символа = нет пробела Переменные можно разделить на две категории: Переменные окружения (Environmental Variables) - это переменные, которые определены для текущей оболочки и наследуются любыми дочерними оболочками или процессами. Переменные окружения используются для передачи информации в процессы, которые порождаются из оболочки. Переменные оболочки (Shell Variables) - это переменные, которые содержатся исключительно в оболочке, в которой они были установлены или определены. Они часто используются для отслеживания эфемерных данных, например, текущего рабочего каталога. Про Linux за 5 минут
img
Одноплатные компьютеры стали довольно популярными в последние десятилетия благодаря их возможности быть использованными в процессе разработки и обучения для начинающих. Одноплатный компьютер представляет собой не что иное, как одну единственную плату, но работает как полноценный компьютер, оснащенный микропроцессором, памятью и устройством ввода-вывода, а также множеством других функций. Одноплатные компьютеры изначально использовались в качестве систем демонстрации и разработки для различных отраслей промышленности. В отличие от стандартного настольного компьютера, одноплатные компьютеры обычно не зависят от слотов расширения для расширения или основных функций. Хотя существует большое количество одноплатных компьютеров, Arduino и Raspberry Pi - два самых популярных устройства. Они стали довольно популярными среди студентов и профессионалов, а также любителей и начинающих программистов. У каждой платы есть свои плюсы и минусы, и профессионалы точно знают, когда и где использовать какую плату, а когда переключаться на другую. Но программисты, которые только начинают создавать проекты, часто мучаются в выборе между ними и пытаются сделать важный выбор - какую плату изучать и использовать для своих проектов. Raspberry Pi Несмотря на размер кредитной карты, Raspberry Pi представляет собой полнофункциональный компьютер, поскольку он имеет выделенную память, графическую карту и процессор. Плата может даже работать под управлением специально разработанной версии ОС Linux. Платы были разработаны Фондом Raspberry Pi для поощрения базового обучения информатике в школах наряду с развивающимися странами. Несмотря на то, что платы были предназначены только для обучения, они стали более популярными, чем предполагалось, и использовались в таких высокотехнологичных приложениях, как робототехника, медиаплееры, эмуляторы и даже АТС Asterisk (дистрибутив под названием RasPBX). Arduino Arduino - это одноплатный компьютер, состоящий из трех основных функций. Первым является аппаратная прототипная платформа, вторым - язык Arduino и, наконец, интегрированная среда разработки (IDE) и библиотеки. Плата Arduino - это скорее микроконтроллер, а не полноценный компьютер. На плате Arduino не может работать операционная система, но код может быть написан и выполнен так, как его постоянное программное обеспечение интерпретирует. Основная функция платы Arduino - взаимодействие со вторичными устройствами и датчиками, что делает ее идеальной для проектов, которые требуют минимальной сложности и работают только на датчике или ручном вводе. Разница между Arduino и Raspberry Pi И Arduino, и Raspberry Pi закрепили свое место в индустрии одноплатных компьютеров и любимы миллионами людей во всем мире. Хотя их характеристики и их возможности различны, все зависит от того, какая плата подойдет для вашего проекта. В этой статье мы обсудим особенности Arduino и Raspberry Pi и проведем сравнение их наиболее выдающихся характеристик, чтобы помочь вам сделать выбор в пользу наилучшего одноплатного компьютера для ваших проектов. Кривая обучения Как мы уже обсуждали ранее, Pi - это больше компьютер, а Arduino, по сути, является дверью в мир программирования. В целом, Arduino гораздо легче освоить, так как он имеет гораздо более низкий барьер для входа. Если у вас мало или совсем нет знаний в области компьютеров и программирования, но вы хотите начать, Arduino - правильный выбор для вас. С другой стороны, люди с опытом работы в Unix или Linux могут легко использовать Raspberry Pi, поскольку на него можно установить специальную версию Linux, созданною для оборудования Raspberry Pi. После установки ОС это похоже на работу на любом компьютере с Linux. Простота Плата Arduino намного проще в использовании по сравнению с Raspberry Pi. Плата Arduino может быть легко сопряжена с аналоговыми датчиками и другими электронными компонентами, используя всего несколько строк кода. В противоположность этому, есть много хлопот для простого считывания входных сигналов с датчиков, поскольку для этого требуется установка нескольких библиотек и программного обеспечения для создания интерфейса между платой и датчиками и другими электронными компонентами. Кодирование в Arduino также проще, чем в Raspberry Pi, который требует знания Linux и его команд. Доступные языки программирования Одноплатный компьютер Raspberry Pi был разработан с целью побудить молодежь присоединиться к программированию. Pi в Raspberry Pi происходит от языка Python, который обозначает его использование в плате. Несмотря на это, Raspberry Pi за короткое время освоила несколько языков программирования и стала основным выбором для обширной группы программистов. Некоторые из языков, которые доступны для использования в Raspberry Pi, это Scratch, Python, HTML 5, JavaScript, JQuery, Java, C, C ++, Perl и Erlang. В случае Arduino вы встретите Arduino IDE - кроссплатформенный пользовательский интерфейс, используемый для написания и загрузки программ на плату. Он написан на языке программирования Java и помогает любому достаточно легко начать программирование Arduino. Но в высокопроизводительных проектах Arduino IDE действует как ограничение того, что можно сделать. Если вы не хотите использовать IDE, вы можете кодировать Arduino, используя язык C ++. Есть много других инструментов, доступных для начинающих и профессионалов, которые можно использовать при программировании в Arduino. Одним из таких инструментов является ArduBlock, который помогает новичкам с минимальным опытом программирования визуализировать свой код, а не печатать его, помогая им понять логику. Еще одним визуальным инструментом является Snap4Arduino, который меньше ориентирован на программирование, но больше помогает пользователю понять, как он работает, так как он создан для немного более старой аудитории. Другими языками, которые могут использоваться прямо или косвенно через внешние коммуникаторы, являются C # и Python. Сетевые возможности Сетевые возможности Raspberry значительно превосходят возможности Arduino. Raspberry Pi 3 имеет Bluetooth и возможность беспроводного подключения. Он также может подключаться к Интернету через Ethernet. Плата поставляется с 1 портом HDMI, 4 портами USB, одним портом камеры, 1 портом Micro USB, 1 портом LCD и 1 портом Display Port DSI, что делает его идеальным для множества приложений. В то же время порты Arduino не созданы для прямого подключения к сети. Даже если это возможно, потребуется дополнительный чип с портом Ethernet, что потребует дополнительной проводки и кодирования. Скорость процессора Разница в скорости процессора между Raspberry Pi и Arduino довольно очевидна и огромна, что связано с тем, что первый является полностью работоспособным компьютером, а другой - микропроцессором. Сравнивая тактовую частоту платы Arduino Uno и платы Raspberry Pi Model B, мы видим значения 16 МГц и 700 МГц соответственно. Поэтому устройство Raspberry работает в 40 раз быстрее, чем плата Arduino. Кроме того, плата Pi имеет в 128 000 раз больше оперативной памяти, чем плата Arduino с оперативной памятью 0,002 МБ. Важно помнить, что Arduino - это просто plug & play устройство и может быть включено и выключено в любое время без каких-либо повреждений. Но Raspberry Pi работает под управлением операционной системы и сам по себе является полноценным компьютером, который требует надлежащего выключения перед отключением питания. Неправильное завершение работы Raspberry Pi может повредить плату, повредить приложения и даже повлиять на скорость процессора. Ввод/Вывод (I/O) Контакты ввода/вывода на вашем одноплатном компьютере позволяют ему общаться с другими подключенными к нему устройствами. Например, если вы хотите активировать двигатель или зажечь светодиод с помощью одноплатного компьютера, вам понадобятся эти выводы ввода/вывода для выполнения этих задач. Raspberry Pi (модель 2) имеет 17 контактов ввода/вывода, а плата Arduino (Uno) - 20 контактов. Потребляемая мощность Из-за своего мощного (сравнительно) процессора плата Pi требует непрерывного источника питания 5 В и может работать не идеально при питании от батарей. Но Arduino может бесперебойно работать с аккумулятором из-за его низких требований к питанию. Хотя энергопотребление может меняться с увеличением количества подключенных устройств. Место хранения Базовая плата Arduino поставляется с хранилищем 32 КБ для хранения кода, который предоставляет платам инструкции. Этого достаточно, так как хранилище не будет использоваться для приложений, видео и фотографий. Pi, однако, не поставляется с хранилищем, но поддерживает порт micro SD, который позволяет пользователю добавлять столько памяти, сколько ему нужно. Доступность и популярность И доски Arduino, и Raspberry Pi получили признание большого числа людей со всего мира. Благодаря такой высокой популярности платы Arduino и Raspberry Pi легко доступны для покупки. Для сравнения, Arduino намного дешевле плат Raspberry Pi из-за ограниченных возможностей. Стоимость может увеличиться с платами высокого класса. Arduino против Raspberry в робототехнике и IoT Выбор правильной одноплатной системы для вашего проекта очень важен, поскольку он будет определять, насколько быстро и эффективно ваша задача будет выполнена. Хотя у плат Arduino и Raspberry Pi есть свои плюсы и минусы, выбор правильной платы будет полностью зависеть от ваших требований. Например, если ваша задача - считывать данные датчиков и реагировать на них в режиме реального времени, плата Arduino подойдет вам больше, чем Raspberry Pi. Это связано с низким энергопотреблением и низким уровнем обслуживания. Arduino идеально подходит для проектов, которые должны работать непрерывно с минимальным взаимодействием и реакцией. Отличным примером такой задачи будет запись температуры на улице и отображение ее на экране. Платы Arduino идеально подходят для начинающих, которые только делают первые шаги и не пока не стремятся создать каких-либо проектов высокого уровня. С другой стороны, Raspberry Pi следует использовать для проектов, которые являются более сложными, чем пример, упомянутый выше. Плата должна использоваться, когда необходимо выполнить несколько задач одновременно, а некоторые или все из них сложны. Например, если ваш проект регистрирует температуру в определенном районе, анализирует тренды температуры за последние недели и прогнозирует погоду на следующие несколько дней, а также принимает решение, будет ли погода оптимальной для орошения, тогда Raspberry Pi это то, что вам нужно. Проще говоря, плата Raspberry Pi предназначена для профессионалов, которые строят сложный и надежный проект, для которого требуется способность выполнять несколько задач одновременно, чего не хватает в Arduino. Обзорная таблица Виртуальная машинаDocker контейнерИзоляция процесса на аппаратном уровнеИзоляция процесса на уровне ОСКаждая виртуальная машина имеет отдельную ОСКаждый контейнер может совместно использовать ОСЗагружается в считанные минутыЗагружается в считанные секундыВиртуальные машины занимают несколько ГБКонтейнеры легкие (КБ / МБ)Готовые виртуальные машины трудно найтиГотовые док-контейнеры легко доступныВиртуальные машины могут легко перейти на новый хостКонтейнеры уничтожаются и воссоздаются, а не перемещаютсяСоздание ВМ занимает относительно больше времениКонтейнеры могут быть созданы в считанные секундыБольше использования ресурсаМеньшее использование ресурсов Итого Обе платы имеют довольно длинный список плюсов и минусов, но они отлично подойдут, если требование будет правильным. Но какими бы разными они ни казались, существует сценарий, в котором они могут работать вместе, чтобы максимизировать результаты проекта. Вы можете сравнить плату Arduino со спинным мозгом тела, который принимает мелкомасштабные решения, такие как зажигание светодиода или измерение температуры жидкости, в то время как плата Raspberry Pi - это мозг, который принимает сложные решения, такие как анализ прошлых ценностей и прогнозирование будущих ценностей. В конце концов, как мы уже говорили, плата Arduino идеально подходит для вас, если вы новичок и хотите узнать об электронике или о тех, кто имеет опыт работы с электроникой и хочет заняться простыми проектами. Raspberry Pi идеально подходит для вас, если у вас есть знания Linux и вы хотите использовать их для создания сложных сетевых электронных проектов.
img
В этой статье мы разберем принцип работы и настройку IP-телефонии по Ethernet сетям. В мире IP-телефонии телефоны используют стандартные порты Ethernet для подключения к сети, и поэтому для отправки и приема голосового трафика, передаваемого посредством IP-пакетов, они используют стек протоколов TCP/IP. Чтобы это работало, необходимо, чтобы порт коммутатора работал как порт доступа, но, в то же время, этот порт работал как магистраль для передачи другого трафика. Принцип работы VLAN для передачи данных и голоса До IP-телефонии компьютер и телефон располагались на одном рабочем месте. Телефон подключался по специальному телефонному кабелю (телефонный UTP-кабель). Причем этот телефон был подключен к специальному голосовому устройству (часто называемому voice switch или частной телефонной станцией private branch exchange [PBX]). ПК, конечно же, подключался с помощью Ethernet кабеля (UTP витой пары) к обычному коммутатору локальной сети, который находился в коммутационном шкафу - иногда в том же коммутационном шкафу, что и голосовой коммутатор (voice switch). На рисунке показана эта идея. Предположим, что у нас есть три виртуальные сети VLAN1, VLAN2 и VLAN3. Виртуальные сети VLAN 1 и VLAN 3 содержат по две пары ПК, которые подключаются к коммутатору через отдельные интерфейсы. Для сети VLAN 1 отведены четыре интерфейса "fa0/12", "fa0/11", "fa0/22", и "fa0/21" соответственно. Аналогично, 4 интерфейса отведены для сети VLAN 3 - "fa0/15", "fa0/16", "fa0/23", и "fa0/24" соответственно. Сеть VLAN 2 состоит из двух ПК, которые подключаются к коммутатору через интерфейсы "Fa0/13" и " Fa0/14". Два коммутатора соединены между собой через магистраль, и интерфейсы "Gi0/1" и "Gi0/2". Термин IP-телефония относится к отрасли сети, в которой телефоны используют IP-пакеты для передачи и приема голоса, представленного битами в части данных IP-пакета. Телефоны подключаются к сети, как и большинство других устройств конечных пользователей, используя либо кабель Ethernet, либо Wi-Fi. Новые IP-телефоны не подключаются непосредственно по кабелю к голосовому коммутатору, а подключаются к стандартной IP-сети с помощью кабеля Ethernet и порта Ethernet, встроенного в телефон. После чего телефоны связываются по IP-сети с программным обеспечением, которое заменило операции вызова и другие функции АТС. Переход от использования стационарных телефонов, которые работали (некоторые работают по сей день) с использованием телефонных кабелей к новым IP-телефонам (которые нуждались в UTP-кабелях, поддерживающих Ethernet) вызвал некоторые проблемы в офисах. В частности: Старые, не IP-телефоны, использовали категорию UTP-кабелей, у которых частотный диапазон не поддерживал скорость передачи данных в 100-Mbps или 1000-Mbps. В большинстве офисов был один кабель UTP, идущий от коммутационного шкафа к каждому столу. Теперь же на два устройства (ПК и IP-телефон) требовалось два кабеля от рабочего стола к коммутационному шкафу. Прокладка нового кабеля к каждому рабочему месту вызовет дополнительные финансовые затраты, и плюс потребуется больше портов коммутатора. Чтобы решить эту проблему, компания Cisco встроила небольшие трехпортовые коммутаторы в каждый телефон. IP-телефоны включают в себя небольшой коммутатор локальной сети, расположенный в нижней части телефона. На рисунке показаны основные кабели, причем кабель коммутационного шкафа подключается напрямую к одному физическому порту встроенного коммутатора телефона, ПК подключается патч-кордом к другому физическому порту телефона, а внутренний процессор телефона подсоединяется к внутреннему порту коммутатора телефона. Компании, использующие IP-телефонию, теперь могут подключать два устройства к одному порту доступа. Кроме того, лучшие практики Cisco, для проектирования IP-телефонии, советуют поместить телефоны в один VLAN, а ПК в другой VLAN. Чтобы это работало, порт коммутатора действует частично в режиме канала доступа (для трафика ПК) и частично как магистраль (для трафика телефона). Особенности настройки VLAN’ов на этом порту: VLAN передачи данных: та же идея настройки, что и VLAN доступа на access порту, но определенная как VLAN на этом канале для пересылки трафика для устройства, подключенного к телефону на рабочем месте (обычно ПК пользователя). Voice VLAN: VLAN для пересылки трафика телефона. Трафик в этой VLAN обычно помечается заголовком 802.1 Q. На рисунке изображена типичная конструкция локальной сети. Имеется коммутатор, подключенный к двум последовательным уровням сетей, VLAN 11 и VLAN 10, где сеть VLAN 11- Voice VLAN, содержащая 4 IP-телефона, и сеть VLAN 10 - Data VLAN, состоящая из 4 ПК. Настройка и проверка работы Data и Voice VLAN Для настройки порта коммутатора, который сможет пропускать голосовой трафик и информационные данные, необходимо применить всего несколько простых команд. Однако разобраться в командах, позволяющих просмотреть настройки режима работы порта, непросто, так как порт действует как access порт во многих отношениях. Ниже показан пример настройки. В данном примере используются четыре порта коммутатора F0/1F0/4, которые имеют базовые настройки по умолчанию. Затем добавляются соответствующие VLAN’ы: VLAN 10 Data Vlan, VLAN 11- Voice Vlan. Далее все четыре порта настраиваются как порты доступа и определяется VLAN доступа (Vlan 10 Date Vlan). В конце настройки определяем на порт VLAN для передачи голосовых данных (Vlan 11- Voice Vlan). Данный пример иллюстрирует работу сети, изображенную на рисунке: При проверке состояния порта коммутатора, из примера выше, увидим разницу в отображаемой информации выходных данных, по сравнению с настройками по умолчанию порта доступа и магистрального порта. Например, команда show interfaces switchport показывает подробные сведения о работе интерфейса, включая сведения о портах доступа. В примере 2 отображены эти детали (подчеркнуты) для порта F0/4 после добавления настроек из первого примера. Первые три выделенные строки в выходных данных отображают детали настройки, соответствующие любому порту доступа. Команда switchport mode access переводит порт в режим порта доступа. Далее, как показано в третьей выделенной строке, команда switchport access vlan 10 определила режим доступа VLAN. Четвертая выделенная строка показывает новый фрагмент информации: идентификатор Voice VLAN, активированная командой switchport voice vlan 11. Эта небольшая строка является единственной информацией об изменении состояния порта.
ВЕСЕННИЕ СКИДКИ
40%
50%
60%
До конца акции: 30 дней 24 : 59 : 59