По вашему запросу ничего не найдено :(
Убедитесь, что запрос написан правильно, или посмотрите другие наши статьи:
img
До сих пор в этой серии статей примеры перераспределения маршрутов, над которыми мы работали, использовали один роутер, выполняющий перераспределение между нашими автономными системами. Однако с точки зрения проекта, глядя на этот роутер понимаем, что это единственная уязвимая точка, то есть точка отказа. Для избыточности давайте подумаем о добавлении второго роутера для перераспределения между несколькими автономными системами. То, что мы, вероятно, не хотим, чтобы маршрут объявлялся, скажем, из AS1 в AS2, а затем AS2 объявлял тот же самый маршрут обратно в AS1, как показано на рисунке. Хорошая новость заключается в том, что с настройками по умолчанию, скорее всего не будет проблем. Например, на приведенном выше рисунке роутер CTR2 узнал бы два способа добраться до Сети A. Один из способов — это через OSPF, к которому он подключен. Другой путь был бы через EIGRP AS, через роутер CTR1 и обратно в OSPF AS. Обычно, когда роутер знает, как добраться до сети через два протокола маршрутизации, он сравнивает значения административного расстояния (AD) протоколов маршрутизации и доверяет протоколу маршрутизации с более низким AD. В этом примере, хотя EIGRP AD обычно составляет 90, что более правдоподобно, чем OSPF AD 110, AD EIGRP External route (т. е. маршрута, который возник в другом AS) составляет 170. В результате OSPF-изученный маршрут CTR2 к сети A имеет более низкую AD (т. е. 110), чем AD (т. е. 170) EIGRP-изученного маршрута к сети A. Что в итоге? CTR2 отправляет трафик в Сеть A, отправляя этот трафик в OSPF AS, без необходимости передавать EIGRP AS. Время от времени, однако, нам потребуется произвести настройки некоторых не дефолтных параметров AD, или же нам понадобятся creative metrics, применяемые к перераспределенным маршрутам. В таких случаях мы подвергаемся риску развития событий, описанных на предыдущем рисунке. Давайте обсудим, как бороться с такой проблемой. Рассмотрим следующую топологию. В этой топологии у нас есть две автономные системы, одна из которых работает под управлением OSPF, а другая- под управлением EIGRP. Роутеры CTR1 и CTR2 в настоящее время настроены для выполнения взаимного перераспределения маршрутов между OSPF и EIGRP. Давайте взглянем на таблицы IP-маршрутизации этих магистральных роутеров. Обратите внимание, в приведенном выше примере, что с точки зрения роутера CTR2, лучший способ добраться до Сети 192.0.2.0 / 30 — это next-hop на следующий IP-адрес 192.0.2.5 (который является роутером OFF1). Это означает, что если бы роутер CTR2 хотел отправить трафик в сеть 192.0.2.0 /30, то этот трафик остался бы в пределах OSPF AS. Интересно, что процесс маршрутизации EIGRP, запущенный на роутере CTR2, также знает, как добраться до Сети 192.0.2.0 / 30 из-за того, что роутер CTR1 перераспределяет этот маршрут в Интересно, что процесс маршрутизации EIGRP, запущенный на роутере CTR2, также знает, как добраться до Сети 192.0.2.0 / 30 из-за того, что роутер CTR1 перераспределяет этот маршрут в EIGRP AS, но этот маршрут считается EIGRP External route. Поскольку EIGRP External route AD 170 больше, чем OSPF AD 110, в OSPF маршрут прописывается в таблице IP-маршрутизации роутера CTR2. Именно так обычно работает Route redistribution, когда у нас есть несколько роутеров, выполняющих перераспределение маршрутов между двумя автономными системами. Однако, что мы можем сделать, если что-то идет не так, как ожидалось (или как мы хотели)? Как мы можем предотвратить перераспределение маршрута, перераспределенного в AS, из этого AS и обратно в исходное AS, например, в примере, показанном на следующем рисунке. В приведенном выше примере роутер OFF1 объявляет сеть 192.168.1.0 / 24 роутеру CTR1, который перераспределяет этот маршрут из AS1 в AS2. Роутер OFF2 получает объявление маршрута от роутера CTR1 и отправляет объявление для этого маршрута вниз к роутеру CTR2. Роутер CTR2 затем берет этот недавно изученный маршрут и перераспределяет его от AS2 к AS1, откуда он пришел. Мы, скорее всего, не хотим, чтобы это произошло, потому что это создает неоптимальный маршрут. Общий подход к решению такой проблемы заключается в использовании route map в сочетании с tag (тегом). В частности, когда маршрут перераспределяется из одного AS в другой, мы можем установить тег на этом маршруте. Затем мы можем настроить все роутеры, выполняющие перераспределение, чтобы блокировать маршрут с этим тегом от перераспределения обратно в его исходный AS, как показано на следующем рисунке. Обратите внимание, что в приведенной выше топологии, когда маршрут перераспределяется от AS1 к AS2, он получает тег 10. Кроме того, роутер CTR2 имеет инструкцию (настроенную в карте маршрутов), чтобы не перераспределять любые маршруты из AS2 в AS1, которые имеют тег 10. В результате маршрут, первоначально объявленный роутером OFF1 в AS1, никогда не перераспределяется обратно в AS1, тем самым потенциально избегая неоптимального маршрута. Далее давайте еще раз рассмотрим, как мы можем настроить этот подход к тегированию, используя следующую топологию. В частности, на роутерах CTR1 и CTR2 давайте установим тег 10 на любом маршруте, перераспределяемом из OSPF в EIGRP. Затем, на тех же самых роутерах, мы предотвратим любой маршрут с тегом 10 от перераспределения из EIGRP обратно в OSPF. Для начала на роутере CTR1 мы создаем карту маршрутов, целью которой является присвоение тегу значения 10. CTR1 # conf term CTR1 (config) # route-map TAG10 CTR1 (config-route-map) # set tag 10 CTR1 (config-route-map) #exit CTR1 (config) # Обратите внимание, что мы не указали permit как часть инструкции route-map, и мы не указали порядковый номер. Причина в том, что permit — это действие по умолчанию, и карта маршрута TAG10 имела только одну запись. Далее мы перейдем к роутеру CTR2 и создадим карту маршрутов, которая предотвратит перераспределение любых маршрутов с тегом 10 в OSPF. Кроме того, мы хотим, чтобы роутер CTR2 маркировал маршруты, которые он перераспределяет из OSPF в EIGRP со значением тега 10. Это означает, что мы хотим, чтобы роутер CTR1 предотвратил перераспределение этих маршрутов (со значением тега 10) обратно в OSPF. Итак, пока мы находимся здесь на роутере CTR1, давайте настроим route-map, которая предотвратит Route redistribution со значением тега 10 в OSPF. CTR1 (config) # route-map DENYTAG10 deny 10 CTR1 (config-route-map) # match tag 10 CTR1 (config-route-map) # exit CTR1 (config) # route-map DENYTAG10 permit 20 CTR1 (config-route-map) # end CTR1 # Эта недавно созданная route-map (DENYTAG10) использует ключевые слова permit и deny, и у нее есть порядковые номера. Порядковый номер 10 используется для запрещения маршрутов с тегом 10. Затем имеем следующий порядковый номер (который мы пронумеровали 20), чтобы разрешить перераспределение всех других маршрутов. Теперь, когда мы создали наши две карты маршрутов, давайте применим TAG10 route map к команде EIGRP redistribute (к тегу routes, перераспределяемому в EIGRP со значением 10). Кроме того, мы хотим применить DENYTAG10 route map к команде OSPF redistribute (чтобы предотвратить перераспределение маршрутов, помеченных значением 10, обратно в OSPF AS). CTR1 # conf term CTR1 (config) # router eigrp 100 CTR1 (config-router) # redistribute ospf 1 route-map TAG10 CTR1 (config-router) # router ospf 1 CTR1 (config-router) # redistribute eigrp 100 subnets route-map DENYTAG10 CTR1 (config-router) # end CTR1 # Теперь нам нужно ввести зеркальную конфигурацию на роутере CTR2. CTR2#conf term CTR2(config)#route-map TAG10 CTR2(config-route-map) # set tag 10 CTR2(config-route-map) # exit CTR2(config)#route-map DENYTAG10 deny 10 CTR2(config-route-map) # match tag 10 CTR2(config-route-map) # exit CTR2(config) # route-map DENYTAG10 permit 20 CTR2(config-route-map) # exit CTR2(config) # router eigrp 100 CTR2(config-router) # redistribute ospf 1 route-map TAG10 CTR2(config-router) # router ospf 1 CTR2(config-router) # redistribute eigrp 100 subnets route-map DENYTAG10 CTR2(config-router) # end CTR2# Просто чтобы убедиться, что наши маршруты помечены, давайте проверим таблицу топологии EIGRP роутера OFF2. Обратите внимание, что все маршруты, перераспределенные в EIGRP из OSPF, теперь имеют тег 10, и мы сказали роутерам CTR1 и CTR2 не перераспределять эти маршруты обратно в OSPF. Именно так мы можем решить некоторые потенциальные проблемы, возникающие при перераспределении маршрутов. Дело за малым - прочитайте нашу статью про route redistribution с помощью IPv6.
img
Сегодня подробно расскажем как найти практическое применение знаниям, полученным в статье про структуру asteriskcdrdb, а именно, как сделать ежедневные отчеты о входящих звонках на почту. Создание скрипта Чтобы наш .php скрипт смог подключиться к базе данных, необходимо создать пользователя, с правами, которые буду позволять ему извлекать необходимую информацию. Для этого, подключимся к нашему серверу по SSH [root@asterisk]# mysql mysql>CREATE USER ' user'@'localhost' IDENTIFIED BY 'P@ssw0rd'; На данном этапе мы создали пользователя user с паролем P@ssw0rd. Далее дадим ему необходимые права: mysql> GRANT SELECT ON asteriskcdrdb.cdr TO 'user' Создадим файл с расширением .php, в котором мы отразим подключение к нашей базе данных. Запишем эту конструкцию так: $hostname = "localhost"; //адрес хоста. Скрипт мы будем запускать на той же машине, на которой находится БД asteriskcdrdb; $username = "user"; //отражаем пользователя $password = "P@ssw0rd"; //пароль для созданного нами пользователя $dbName = "asteriskcdrdb"; //база данных, в которой хранятся необходимые нам данные $today = date('y-m-d'); // сегодняшняя дата в формате 2016-03-25 $counter = 1; // счетчик mysql_connect($hostname,$username,$password) OR DIE("Не могу создать соединение "); // соединиться к БД mysql_select_db($dbName) or die(mysql_error()); //выбрать базу данных. Если произойдет ошибка - вывести ее $headers = "; charset=windows-1251 "; //заголовок для письма $headers .= "From: Мерион Нетворкс <info@merionet.ru> "; $headers .= "Reply-To: info@merionet.ru "; Предположим, что все входящие звонки приходят на номер секретаря – 100. Так же мы знаем, что при звонке из города, мы видим номер звонящего, который содержит в себе больше 3 символов (пусть у нас используется трехзначная внутренняя нумерация). Наша задача сводится к формулировке запроса к таблице cdr. Добавляем к нашему .php файлу: $query = "SELECT `dst` , `src` , `duration` , `dstchannel` , `calldate` , `disposition` FROM `cdr` WHERE `calldate` >='$today 00:00:00' AND `calldate` <='$today 23:59:59' AND LENGTH( `src` ) >3 AND `dst` = '100';" ; $res=mysql_query($query) or die(mysql_error()); // Выполнить запрос. Если произойдет ошибка - вывести ее. $number = mysql_num_rows($res); // Как много нашлось строк У нас почти все готово. Осталось только обработать данные на выходе. Для этого, нам понадобится следующая конструкция: //формируем шапку нашей таблицы со значениями $mes .= ' table style="max-width: 575px;border-bottom:none; margin: 0 auto;border-spacing: inherit;"> thead> tr style="border-bottom: 2px solid #05477c;"> th style="padding:10px; color: #fff; max-width: 150px;background:#05477c;">Порядковый номер</th> th style="padding:10px; color: #fff; max-width: 150px;background:#05477c;">Дата</th> th style="padding:10px; color: #fff; max-width: 100px;background:#05477c;">От кого</th> th style="padding:10px; color: #fff; max-width: 45px;background:#05477c;">Кому</th> th style="padding:10px; color: #fff; max-width: 45px;background:#05477c;">Статус звонка</th> /tr> /thead>'; //перебираем значения ассоциативного массива. Число элементов данного массива равно числу строк на выходе sql запроса while ($row=mysql_fetch_array($res)) { $mes .= ' tbody> tr style="width: 100px;"> td style="padding:10px; border-bottom: 1px solid #eee; text-align:center;">'.$counter.'</td> td style="padding:10px; border-bottom: 1px solid #eee; text-align:center;min-width: 100px;">'. $row['calldate'].'</td> td style="padding:10px; border-bottom: 1px solid #eee; text-align:center;min-width: 100px;">'. $row['src'].'</td> td style="padding:10px; border-bottom: 1px solid #eee; text-align:center;">'.$row['dst'].'</td> td style="padding:10px; text-align:center; border-bottom: 1px solid #eee; min-width: 120px; ">'.$row['disposition'].'</td> /tr>'; $counter = $counter + 1; } Теперь, мы храним в переменной $mes html таблицу, которая готова к отправке на почту. Добавим в конец скрипта: mail("info@merionet.ru", 'Все входящие за '.$today.'', $mes, $headers); ВАЖНО! Если вы используете кириллические символы, установите кодировку .php файла на Кириллицу (windows-1251) Итак, готово. Давайте посмотрим что приходит нам на почту: Работает. Давайте сделаем ежедневное задание на отработку этого скрипта через cron. Сделаем, например, ежедневно, в 17:30, когда рабочий день подходит к концу: 30 17 * * * php /home/admin/mail_report.php Не забудьте в начала скрипта поставить открывающий тэг php, а в конце скрипта закрывающий.
img
В статье, мы разберем как работать в операционной системе Linux с HDD, Logical Volume и все что с этим связанно. А также рассмотрим утилиты для работы с HDD. Разберем, что такое LVM. Вводная Те, кто читал пред идущие стати должны понимать, что в операционной системе есть определенные папки. Это стандартный набор папок. Сейчас обратим внимание на те папки, в которые могут быть смонтированы отдельные разделы. Это значит, что если мы видим в корневом разделе какую-либо папку, то не факт, что данная папка находится на том же жестком диске, что и соседние папки или даже сама корневая файловая система. Это могут быть отдельные жесткие диски или разделы жестких дисков, которые смонтированы в корневую файловую систему. Самый большой раздел - это сама корневая файловая система, обозначается символом "/" . Следующий раздел, который обычно находится отдельно - это "/boot", загрузочный раздел, обычно он мегабайт на 100. Там хранятся файлы необходимые для загрузки операционной системы и само ядро. Можно данную директорию оставить на корневом разделе, но если у нас большой жесткий диск хотя бы на 1 ТБ, то старые диски его могут не увидеть при загрузке, поэтому хороший тон создавать отдельный раздел на жестком диске размером от 100 МБ. Директория "/home" - это домашние папки пользователей. Это некий аналог папки в операционной системе Windows, такой как Documents and Settings или c:users. Это директория, где хранятся все папки пользователя. Его можно монтировать, как сетевую папку. Например, если у вас используются какие-нибудь перемещаемые профили. Пользователь работает на нескольких компьютерах и ему необходимо, что бы везде был одинаковый рабочий стол. Вот в таком случае было бы правильно хранить его домашнюю папку где-нибудь на сервере и просто ее монтировать как сетевую папку, предоставляя доступ к файлам. Следующая папка, которая находится в корне - это "/root" она является домашней папкой суперпользователя, очень важная папка поэтому она хранится отдельно. Папка "/etc" - в ней находится конфигурация нашей операционной системы и ее компонент. Так же бывает, что она находится на отдельных дисковых разделах. Мы конечно сами определяем при установке как разбить жесткий диск, но, если при установке мы ставим галочку в установщике, чтобы он автоматически разбил жесткий диск и создал разделы так, как он считает нужным. Директория "/opt" в данной директории находится программное обеспечение от третьих поставщиков. Некоторые серверные дистрибутивы тоже хранят ее на отдельном логическом разделе. Директория "/var" здесь хранятся все часто меняющиеся данные. Например, логи различного программного обеспечения или изменяющиеся программные данные. Возможно для этой директории имеет смысл использовать быстрые диски, например, SSD. Потому, что к ним будет идти очень частое обращение программного обеспечения. Директория "/usr" в ней находятся все установленные пакеты программ, документация и исходный код ядра. Чаще всего данная директория смонтирована вообще в режиме "только чтения" и в принципе она может быть расположена вообще на каком ни будь медленном диске или папке в сети. Директория "/tmp" предназначена для хранения временных файлов. Важной особенностью данной папки является то, что хранящиеся файлы в ней, будут удалены в случае перезагрузки машины. Т.е при перезагрузки данная папка очищается автоматически. Существует еще один отдельный раздел подкачки swap. Обычно операционная система windows использует файл подкачки, то Linux чаще всего использует раздел подкачки, хотя может использовать и файл. Данный раздел не монтируется в нашу файловую систему, он просто существует отдельно. Как это выглядит в консоли. Переходим в корневую директорию cd / . Вводим команду ls и видим, как все директории у нас отображаются. Все те папки о которых шла речь мы видим находятся в корневой директории, кроме раздела swap. Для того, чтобы посмотреть, что и куда смонтировано, то необходимо посмотреть специальный конфигурационный файл cat /etc/fstab Для упрощения объяснения, мы под жестким диском будем понимать единое пространство, которое мы можем разбить на несколько частей. Изначально, компьютер не видел более 4-х разделов - этого считалось достаточно. Поэтому сейчас, изначально по умолчанию жесткий диск не может быть разбит на более чем 4 раздела. Если нам необходимо больше разделов, то необходимо создать так называемый расширенный раздел. И этот расширенный раздел уже будет содержать в себе несколько логических разделов. В старых версиях Linux диски назывались hd0, hd1 и т.д, сейчас жесткие диски называются sda, т.е буквами. USB устройства у нас так же идентифицируются как жесткие диски. Разделы у нас нумеруются по порядку sda1, sda2 и т.д. Т.е. название раздела у нас состоит из буквы диска и номера раздела по порядку. Следовательно, первые 4 цифры зарезервированы и даются только основным разделам, именно поэтому логические разделы нумерация начинается с 5-ки. Основной утилитой для работы с разделами является утилита FDISK. Это утилита используется для разбивки жесткого диска. Так же есть утилита MKFS. Данная утилита используется для создания файловой системы. Мы можем посмотреть все существующие жесткие диски командой fdisk -l. При выводе данной команды мы можем видеть, что у нас 2 подключенных жестких диска sda и sdb. В выводе мы можем так же увидеть их физический объем. На первом диске sda, мы так же можем увидеть 2 раздела sda1 и sda2. Начать работать со вторым жестким диском, необходимо сначала указать, как определенный файл. Устройства лежат в директории "/dev". Пишем команду fdisk /dev/sdb Получается следующая картина: А нажав букву m мы можем получить доступ к справке по работе с данной утилитой. Как можно заметить функционал утилиты достаточно обширен. Можно добавлять партиции, можно удалять партиции. Следующим шагом необходимо создать новый раздел. Выбираем опцию n. Далее предлагается выбор primary или extended. Мы выбираем primary ключ p. Далее выбираем номер раздела 1-4. Например, 1. Далее система спрашивает где будет (на каком секторе) начинаться разметка раздела. Можно выбрать по умолчанию. На следующем шаге мы можем указать сектор, но это крайне неудобно, проще указать сколько мы хотим выделить под размер, например, +10G. И этот раздел станет 10 гигабайт. Попробуем второй вариант с созданием раздела, он будет расширенный (extended). Выбираем ключ e, выбираем 2 раздел. Выбираем с какого сектора он начнется. Следующим шагом +8G. Мы создали расширенный диск на 8 GB. Далее создаем sdb3 на оставшихся 2 GB. А также 8GB расширенного диска разбиваем на 2 логических по 4 GB каждый. Все операции одинаковые. В после создания последнего раздела выбираем опцию w. Которая записывает все изменения. В итоге Прежде чем использовать эти разделы их необходимо отформатировать. Если посмотреть на вывод команды, мы можем увидеть еще одно интересное поле с информацией Id - это метка этого раздела. Необходимо разобраться, как эти id менять. Используем опять утилиту fdisk /dev/sdb. Далее используем ключ t. Утилита предлагает выбрать номер раздела. Выбираем 1. Затем необходимо ввести id в шестнадцатеричном формате, список всех вариаций и их описание можно вывести командой L. Можно заметить, что везде стоял по умолчанию 83 т.е. linux, мы можем изменить на любую метку, например, на 86 NTFS - windows раздел. 3 раздел пометим а5. Записываем изменения w. И можно все изменения увидеть через fdisk -l. Далее, чтобы пользоваться этими разделами, нам сначала их надо отформатировать. Чтобы это сделать используем утилиту mkfs. Набираем mkfs.ext4 , после точки указываем целевую , будет переформатирован раздел , а через пробел собственно сам раздел. Например mkfs.ext4 /dev/sdb5. Теперь немного, о разделе подкачки swap. Для работы с ним используется swapon и swapoff. Через первую команду мы можем включать раздел подкачки, добавлять разделы подкачки, а через вторую команду выключать. Так же есть утилита mkswap - которая позволяет создавать т.е. форматировать раздел, как раздел подкачки. А также у нас есть конфигурационный файл, расположенный в следующем месте /etc/fstab, в данном конфигурационном файле описывается монтирование файловых систем. Соответственно можно примонтировать разделы в ручном режиме, но если мы хотим, чтобы при загрузке разделы сами монтировались, то необходимо конфигурировать файл /etc/fstab/ Командой swapon -s, мы можем посмотреть информацию по своп разделу. Чтобы добавить новый своп раздел, то нам необходимо через команду fdisk создать новый раздел и указать , что он именно своповский раздел, потом его необходимо отформатировать и примонтировать раздел. Командой cat /etc/fstab мы можем посмотреть, какие разделы монтируются при загрузке. Выглядит это примерно так: Мы видим, что вот этот раздел с uuid 50cee6ca-cbd2-454b-a835-2614bf2e9d5d монтируется в корень, знак "/" об этом говорит и имеет файловую систему ext4. Uuid смотрим с помощью команды blkid. Раздел подкачки, как и файл подкачки - это место на диске, которое используется, как RAM. Если у нас не хватает оперативной памяти, то компьютер может пользоваться этим разделом, как оперативной памятью. Создадим новую директорию командой mkdir mounted и смонтируем туда раздел. Например, /dev/sdb5. Используем команду mount /dev/sdb5 /mounted. Чтобы отмонтировать используем команду umount /mounted. LVM LVM - это система управления томами для Linux. Она позволяет создать поверх физических разделов , Logical Volume, которые будут видны операционной системе , как обычные блочные устройства с томами. Преимущества: Мы можем в одну группу Logical Volume можем добавить разное количество физических дисков. Мы можем менять размеры этих разделов прям во время работы операционной системы. В данном случае на картинке есть, 3 HDD, на каждом есть определенное количество разделов. И мы можем из них собрать группу томов vg1. Которая будет видеть свои разделы, как физические тома, те объединяются в группу томов, а внутри этой группы мы можем создавать логические тома, вообще не указывая где они находятся, и они сами распределяются между дисками. Соответственно на каждом логическом томе будет какая-то файловая система. Чтобы посмотреть физические тома пользуемся командой pvdisplay. Посмотреть volume group, команда vgdisplay. Посмотреть логические тома lvdisplay. Удаляем, через fdisk все разделы на жестком диске /dev/sdb. Создаем 2 раздела по 4 ГБ основных с типом 8e, т.е. LVM тип. Создадим физический том командой pvcreate /dev/sdb1, аналогично делаем для второго раздела. Далее необходимо создать виртуальную группу vgcreate vg1 /dev/sdb1 /dev/sdb2, т.е. оба раздела. В группе можем создать пару логических томов командой lvcreate -n lv1 -L 2G vg1, где -n новый раздел, -L - объем и последний параметр в какой виртуальной группе. И можно создать второй lvcreate -n lv2 -L 3G vg1. Появились новые блочные устройства lv1 и lv2. Осталось их отформатировать. Команда mkfs.ext4 /dev/vg2/lv1 и аналогично второй. Данная группа позволяет легко добавлять и удалять HDD. Возможно добавление нового жесткого диска и на увеличение размера наших томов. Чтобы изменить размер команда lvresize -L 4G vg1/lv2. Система LVM позволяет делать снимки состояний, т.е. снапшоты. Они используются для систем резервного копирования, например.
ВЕСЕННИЕ СКИДКИ
40%
50%
60%
До конца акции: 30 дней 24 : 59 : 59