По вашему запросу ничего не найдено :(
Убедитесь, что запрос написан правильно, или посмотрите другие наши статьи:
img
Vagrant является инструментом с помощью которого осуществляется создание и управление виртуальными машинами с помощью технологии виртуализации. Благодаря простому в использовании алгоритму и автоматизации процессов, Vagrant сокращает время настройки и оптимизации среды в которой вы будете работать. Погнали. Установка для Windows Установка Vagrant сама по себе очень проста, Вам необходимо скачать клиент с официального сайта для операционной системы, которую вы планируете юзать и запустить процесс установки. Для работы Vagrant также необходимо скачать VirtualBox с официального сайта. VirtualBox гипервизор, осуществляющий процесс виртуализации (опа, тавтология) систем Linux, macOS, Windows и других. Установка софта VirtualBox, как и самого Vagrant проста и не вызовет у вас никаких вопросов и проблем, а как только вы установите две программы, рекомендуется выполнить перезагрузку Вашей системы. Кстати, почитать об установке VirtualBox 6.0 на Linux вы можете в нашей статье После установки откройте командную строку и проверьте доступность Vagrant с помощью следующих строк кода: $ vagrant Usage: vagrant [options] <command> [] -v, --version Print the version and exit. -h, --help Print this help. # ... Первым шагом в настройке виртуальной машины с помощью Vagrant является создание Vagrantfile, который будет содержать все необходимые настройки. Введите следующую команду: mkdir vagrant_demo && cd vagrant_demo vagrant init ubuntu/trusty64 Vagrantfile - это файл Ruby, который описывает, как настроить и подготовить виртуальную машину. Однако, вместо создания виртуальной машины с нуля, софт предлагает вам воспользоваться базовыми образами для использования "шаблонов" виртуальной машины. Эти базовые образы в Vagrant называются "Vagrant box", которые добавляются в Vagrant с помощью инструмента vagrant box add, сохраняющего Vagrant box под определенным именем, предоставляя возможность использовать несколькими средами повторно. Круто, не правда ли? $ vagrant box add hashicorp/precise64 С помощью этой команды вы сможете загрузить готовый Vagrant box с названием "hashicorp/precision64" из каталога Vashgrant Cloud, предоставляемого разработчиками для обмена готовыми образами. Следует отметить и то, что имеется возможность добавления образов из локальных файлов или пользовательского URL. "Боксы" хранятся для каждого пользователя отдельно. Каждый проект Vagrant box создает новую копию "бокса" и никогда не изменяет исходный образ. Это означает, что если у вас есть два проекта, в которых используется один образ Vagrant box hashicorp/precision64, добавление файлов на одной виртуальной машине не повлияет на другую. Когда Vagrant box добавлен в Vagrant, вы можете настроить его для использования в качестве основы. Откройте Vagrantfile и измените содержимое на следующее: Vagrant.configure("2") do |config| config.vm.box = "hashicorp/precise64" end Вы можете указать версию "бокса", указав config.vm.box_version, например: Vagrant.configure("2") do |config| config.vm.box = "hashicorp/precise64" config.vm.box_version = "1.1.0" end Также возможно указать URL-адрес, используя config.vm.box_url: Vagrant.configure("2") do |config| config.vm.box = "hashicorp/precise64" config.vm.box_url = "https://vagrantcloud.com/hashicorp/precise64" end Загружаем первую виртуальную машину Vagrant и вводим команду: $ vagrant up В течении минуты работа этой команды завершится, загрузив для Вас виртуальную машину с Ubuntu. Процесс загрузки будет выглядеть примерно следующим образом: Чтобы проверить его работоспособность производится подключение SSH к виртуальной машине: $ vagrant ssh. Эта команда переведет вас в полноценный SSH-сеанс. Теперь у Вас есть возможность взаимодействия с виртуальной машиной. Сеанс SSH может быть завершен с помощью сочетания клавиш CTRL + D. vagrant@precise64:~$ logout Connection to 127.0.0.1 closed. По окончанию работы с виртуальной машиной следует запустить команду vagrant destroy и Vagrant прекратит использование любых ресурсов, потребляемых виртуальной машиной. Установка на Ubuntu: Устанавливаем Virtualbox, который, кстати, сразу доступен в репозиториях Ubuntu: >sudo apt install virtualbox Совет: Следует отметить, что Vagrant и Virtualbox, доступные в репозиториях Ubuntu могут быть не самой актуальной версии, для установки последних версий этих программ, загрузите их с официальных сайтов разработчиков. Чтобы убедиться, что установка прошла успешно с помощью следующей команды мы можем проверить версию программы Vagrant: vagrant --version Вы должны увидеть примерно следующее: Vagrant 2.0.2 Убедившись, что Vagrant установлен в системе Ubuntu, мы можем создать среду разработки, которая является наиболее распространенным вариантом использования данной программы. Первым шагом является создание каталога, который будет корневым каталогом проекта. И делаем файл Vagrantfile. Создайте каталог проекта и переключитесь на него: mkdir ~/my-first-vagrant-project cd ~/my-first-vagrant-project Следующим шагом является инициализация нового Vagrantfile с помощью команды vagrant init. В этом примере мы у нас CentOS 7. Запустите следующую команду, чтобы инициализировать новый Vagrantfile: vagrant init centos/7 A `Vagrantfile` has been placed in this directory. You are now ready to `vagrant up` your first virtual environment! Please read the comments in the Vagrantfile as well as documentation on `vagrantup.com` for more information on using Vagrant. Запустив vagrant up, мы получаем возможность создать и настроить среду в соответствии с Vagrantfile. vagrant up ==> default: Configuring and enabling network interfaces... default: SSH address: 192.168.121.74:22 default: SSH username: vagrant default: SSH auth method: private key ==> default: Rsyncing folder: /home/linuxize/Vagrant/my-first-vagrant-project/ => /vagrant Как видно из приведенной выше информации, Vagrant также внедряет каталог проекта в /vagrant на виртуальной машине, что позволяет вам работать с файлами вашего проекта на вашем хост-компьютере. Чтобы войти в среду, просто запустите ее с помощью команды: vagrant ssh Остановка работы среды: vagrant halt Следующая строка остановит работу среды, а также очистит всю информацию, которая была необходима для ее работы: vagrant destroy Благодаря нашей статье, вы увидели процесс установки и настройки виртуальной машины на свой компьютер на Windows или Ubuntu 18.04, а также в статье наглядно продемонстрирован процесс создания и настройки виртуальной машины. Профит!
img
Мы продолжаем знакомить наших читателей с программными приложениями для совершения дешевых телефонных звонков по сети Интернет. В данной статье рассмотрим один из самых популярных софтфонов (программных телефонов) от компании Counter Path - X-Lite Приложение X-Lite работает по самому распространенному протоколу VoIP-телефонии – SIP и поддерживает следующие типы аудио: G.711aLaw, G.711uLaw, G.722, OPUS, Speex, Speex Wideband и видео-кодеков: H.263, H.263+ 1998. Компанией - разработчиком реализованы версии для операционных систем Microsoft Windows, Linux и Mac OS. В стандартный функционал программы X-Lite входит переадресация звонка, постановка звонка на удержание, автоответчик и другие важные инструменты. Стоит отметить, что в расширенный функционал, который становится доступным после покупки дополнительных лицензий входят весьма интересные функции, такие как автоматическое эхо-подавление, автоматическая регулировка уровня громкости и определение голосовой активности. Установка Перейдём к установке. Сначала, необходимо скачать нужный дистрибутив с сайта разработчика. Последняя доступная версия – 4.9. Процедура установки вполне стандартная и не требует дополнительных описаний. По завершению установки, перед нами открывается панель управления приложением X-Lite. Настройка Для того, чтобы появилась возможность совершать звонки через Интернет, необходимо зарегистрировать учетную запись SIP. Для этого, на главной панели управления нажимаем Softphone → Account Settings, перед нами откроются настройки новой учётной записи SIP. Как видно, по умолчанию уже выбран протокол SIP и сменить его нельзя. Ниже идут разрешения для данной учетной записи: Allow this account for Call - совершение звонков IM/Presence - обмен мгновенными сообщениями и состоянием присутствия Далее следуют поля для аутентификационных данных учётной записи для регистрации на SIP – сервере. Заполнить их надо также, как и на IP-АТС. В нашей примере мы используем Asterisk с графической оболочкой FreePBX 13: Поскольку в нашем случае на IP-АТС был создан внутренний номер типа CHAN_SIP, то при регистрации учетной записи на софтфоне, необходимо также указать специальный порт – 5061. Если всё было сделано верно, то мы увидим статус Available после регистрации. Это значит, что учётная запись была успешно зарегистрирована на сервере и можно совершать звонки, используя настроенный софтфон X-Lite.
img
Система доменных имен (DNS – Domain Name System) обеспечивает сетевую коммуникацию. DNS может показаться какой-то невидимой силой или сущностью до тех пор, пока что-то пойдет не так, потому что если DNS выйдет из строя, то ничего работать не будет. В данной статье будут рассмотрены передовые методы и наиболее важные меры безопасности для поддержания работоспособности вашей инфраструктуры DNS. Чтобы создать безопасную и надежную DNS, обязательно изучите перечисленные ниже пункты. Передовые технологии для обеспечения высокой производительности DNS Обеспечение избыточности и высокой доступности DNS DNS является основой сетевых приложений, поэтому инфраструктура DNS должна быть высоко доступной. А чтобы обеспечить необходимый уровень избыточности, в вашей организации должно быть, как минимум, два DNS-сервера, первичный и вторичный. Чтобы обеспечить работу критически важных для бизнеса систем, необходимо иметь, как минимум, два внутренних DNS-сервера. Все системы активного каталога, обмена данными и электронной почты полагаются на корректную работу DNS. Без исправно функционирующих внутренних DNS-серверов внутренние устройства не будут иметь возможности обмениваться данными. Если на одном DNS-сервере возникнет проблема, то второй сразу же заменяет его. Администраторы настраивают оборудование так, чтобы автоматически использовался вторичный DNS, если первичный не отвечает. IP-адрес внутреннего DNS-сервера может быть любым в диапазоне IP-адресов частной сети. Обеспечивая избыточность DNS-серверов, вы можете добиться высокой доступности инфраструктуры DNS. Непрерывная репликация с первичных серверов на вторичные обеспечит синхронизацию ваших DNS-записей и защитит систему от сбоев. Вы можете быть уверены в том, что конечный пользователь всегда будет иметь возможность получить доступ к системам. Сокрытие DNS-серверов и DNS-информации Не каждый DNS-сервер и не каждая информация должна быть доступна для всех пользователей. Во-первых, откройте только те серверы и данные, которые необходимы лицам, непосредственно использующим эти серверы. Это особенно важно, если ваши доменные имена являются общедоступными. Во-вторых, скройте свой основной DNS-сервер. Внешние пользователи не должны видеть первичные серверы. Записи для этих серверов не должны быть видны ни в одной общедоступной базе данных серверов имен. Запросы от пользователей должны обрабатывать только вторичные DNS-серверы. Если DNS-сервер доступен за пределами вашей сети, то это должен быть авторитативный DNS-сервер. Внешним пользователям не нужно обращаться к вашим рекурсивным DNS-серверам. Системная конфигурация будет высокопроизводительной только тогда, когда сервер будет отвечать только на итеративные запросы для соответствующих зон, за которые он отвечает. В довершение ко всему, иметь доступ к первичным серверам должны только системные администраторы и IT-персонал вашей организации. Если ваши первичные DNS-серверы будут открыты для всех внутренних пользователей, то это может создать серьезную угрозу для безопасности. Как показывает практика, лучше скрывать DNS-серверы и некоторые данные от пользователей, которым доступ к ним не нужен. Нужно ли использовать внешний или внутренний DNS-сервер? Ответ на данный вопрос зависит от внутренней настройки. Чтобы устройства в одном домене могли общаться друг с другом, вам необходимо указать внутренний DNS-сервер. Внешние DNS-серверы не могут работать с именами хостов внутренних устройств. Например, когда компьютер DESKTOP1 отправляет DNS-запрос для офисного принтера или сервера hr-1, только внутренняя DNS может предоставить запись ресурса. Если вы настроите устройство на использование внешнего DNS, например, 8.8.8.8 Google, то вы не сможете использовать внутренние ресурсы. Во внутренних средах необходимо установить, как первичный, так и вторичный DNS на внутренний сервер имен. Даже если основной DNS-сервер даст сбой, проблем с подключением не будет. Дополнительный DNS-сервер содержит все записи и действует как резервная копия. В случае возникновения какой-либо проблемы, этот сервер отвечает на все запросы до тех пор, пока не заработает основной сервер. Использование локального или ближайшего DNS-сервера Офисы крупных организаций часто расположены по всему миру. В таком случае следует настроить локальный DNS-сервер в каждом офисе, если позволяет инфраструктура. А все потому, что локальный сервер сокращает время ответа на DNS-запросы. Если же запрос проходит через глобальную сеть к удаленному серверу имен, то время загрузки увеличивается. При большом количестве клиентов, естественно, увеличивается количество DNS-запросов. Одна централизованная группа DNS-серверов, конечно, может обрабатывать все эти запросы, но с большой задержкой. Если компьютеры пользователей будут направляться на локальный или ближайший сервер имен, то время отклика может существенно сократиться. В таком случае задержка не превышает 50 мс. Более того, это значение обычно даже намного ниже. Использование ближайшего DNS-сервера сокращает время загрузки для всех устройств. Таким образом, вы также уменьшаете нагрузку на удаленный сервер в штаб-квартире и повышаете его производительность. Здесь также остается актуальной рекомендация иметь, как минимум, два DNS-сервера. Передовые методы обеспечения безопасности DNS DNS-серверы очень часто становятся целью кибератак. Важным шагом в предотвращении вторжений в вашу организацию является защита инфраструктуры DNS. Чтобы избежать серьезного нарушения настроек DNS, обязательно изучите меры безопасности, описанные ниже. Ведение журнала DNS-сервера Ведение журнала DNS-сервера – это один из самых эффективных способов отслеживания активности DNS. Журналы сообщают вам, если кто-то пытается вмешаться в ваши DNS-серверы. Помимо активности пользователей, журналы отладки сообщают вам о проблемах с DNS-запросами или обновлениями. Журналы DNS также показывают следы отравления кэша. При таком виде атаки злоумышленник изменяет хранящиеся в кэше данные и сбивают пользователей с курса. Например, IP-адрес www.youtube.com может быть заменен на IP-адрес вредоносного сайта. Когда пользователь отправляет запрос в DNS для youtube.com, сервер теперь возвращает неверный IP-адрес. В результате чего пользователи попадают на тот веб-сайт, который они не хотели посещать и становятся мишенью для хакеров. Несмотря на то, что ведение журнала отладки DNS повышает уровень безопасности, некоторые системные администраторы решают этим пренебречь. Основная причина такого решения – повышение производительности. Отслеживание сетевой активности может помочь вам обнаружить некоторые атаки, такие как DDoS, но не отравление кэша. Поэтому мы настоятельно рекомендуем использовать ведение журналов отладки DNS. Блокировка кэша DNS Всякий раз, когда появляется запрос от клиента, DNS находит информацию и сохраняет ее в кэше для будущего использования. Этот процесс позволяет серверу быстрее отвечать на одни и те же запросы. Злоумышленники могут воспользоваться этой функцией путем изменения сохраненной информации. Следующий шаг после использования журналов отладки DNS – это блокировка кэша DNS. Это функция определяет, когда кэшированные данные могут быть изменены. Сервер хранит информацию о поиске в течение времени, определяемого TTL (Time To Life - время жизни). Если блокировка кэша не используется, то информация может быть перезаписана до истечения TTL. Это оставляет место для атак с отравлением кэша. В некоторых операционных системах блокировка кэша может быть включена по умолчанию. Масштаб блокировки кэша может достигать 100%. Когда установлено значение 70, то перезапись данных невозможна до истечения 70% TTL. При определении блокировки кэша равным 100 изменение кэшированной информации блокируется до истечения всего TTL. Фильтрация DNS-запросов для блокировки вредоносных доменов Фильтрация DNS – это эффективный способ ограничить доступ пользователей к веб-сайту или домену. Основная причина для блокировки разрешения имен для домена – наличие информации о вредоносности этого домена. Когда клиент отправляет запрос на заблокированный веб-сайт, DNS-сервер прекращает любую связь между ними. DNS-фильтрация значительно снижает вероятность проникновения вирусов и вредоносных программ в вашу сеть. Когда пользователь не может получить доступ к вредоносной странице, то и количество угроз, которые могут проникнуть в вашу инфраструктуру, крайне мало. Таким образом, вашему IT-персоналу не требуется круглосуточно работать, чтобы очищать систему от вирусов. Помимо соображений безопасности, есть еще одна причина, по которой организации могут заблокировать домен – бизнес-политика или по соображениям производительности. В список заблокированных доменов могут входить социальные сети, азартные игры, порнография, страницы потокового видео или любые другие веб-сайты. DNS может фильтровать запросы по пользователю, группе или блокировать доступ для всех пользователей. Современные системы обеспечения защиты ПО и брандмауэры имеют DNS-фильтрацию в стандартной комплектации. Некоторые из них предоставляют списки плохих доменов, которые регулярно обновляются. Вы можете использовать готовое программное решение и таким образом автоматизировать фильтрацию DNS, а не добавлять новые записи вручную. Проверка целостности данных DNS с помощью DNSSEC Модули безопасности службы доменных имен (DNSSEC – Domain Name System Security Extensions) гарантируют, что пользователи получат действительные ответы на свои запросы. Целостность данных достигается за счет цифровой подписи DNSSEC на данных DNS, предоставляемых серверам имен. Когда конечный пользователь отправляет запрос, DNS-сервер предоставляет цифровую подпись с ответом. Стало быть, пользователи знают, что они получили достоверную информацию в качестве ответа на отправленный ими запрос. Этот дополнительный уровень безопасности помогает бороться с атаками на протокол DNS. Атаки «спуфинга» DNS и отравления кэша успешно предотвращаются, поскольку DNSSEC обеспечивает целостность данных и авторизацию их источника. В дальнейшем пользователи будут уверены, что посещают именно те страницы, которые хотели посетить. Настройка списков контроля доступа Списки контроля доступа (ACL – Access Control Lists) – это еще один способ защиты DNS-серверов от несанкционированного доступа и атак «спуфинга». К вашему основному DNS-серверу доступ должны иметь только системные и IT-администраторы. Настройка ACL для разрешения входящих подключений к серверу имен с определенных хостов гарантирует то, что только определенная часть персонала сможет обращаться к вашим серверам. Кроме того, ACL должны определять, какие серверы могут выполнять передачу зон. Злоумышленники могут попытаться определить настройки вашей зоны, отправив запросы на передачу зоны через вторичные DNS-серверы. Если вы заблокируете все запросы на передачу зоны через вторичные серверы, то злоумышленник не сможет получить информацию о зоне. Эта конфигурация не позволяет третьим лицам получить представление о том, как организована ваша внутренняя сеть. Заключение Всегда есть возможности для улучшения системной архитектуры DNS и ее безопасности. Постоянные угрозы скрываются и ждут, когда появится уязвимость в вашей информационной системе, чтобы воспользоваться ей. Но тем не менее, если вы будете следовать рекомендациям, описанным в данном руководстве, то вы охватите наиболее важные аспекты, которые необходимы для обеспечения безопасности и отказоустойчивости вашей инфраструктуры DNS.
ВЕСЕННИЕ СКИДКИ
40%
50%
60%
До конца акции: 30 дней 24 : 59 : 59