По вашему запросу ничего не найдено :(
Убедитесь, что запрос написан правильно, или посмотрите другие
наши статьи:

Классический стандарт связующего дерева работает нормально, но в настоящее время для современных сетей он слишком медленный 🐌
В настоящее время мы наблюдаем в наших сетях все больше и больше маршрутизации. Протоколы маршрутизации, такие как OSPF и EIGRP, намного быстрее адаптируются к изменениям в сети, чем spanning-tree. Чтобы не отставать от скорости этих протоколов маршрутизации, была создана еще одна разновидность связующего дерева... (rapid spanning tree) быстрое связующее дерево.
Rapid spanning tree - это не революция spanning tree, а его эволюция. Некоторые вещи были изменены для того, что бы ускорить процесс, но с точки зрения конфигурации - это то же самое, что классический spanning tree . Я называю оригинальное spanning tree "классическим spanning tree".
Азы Rapid spanning tree
Помните состояние портов spanning tree? У нас есть блокирующее, прослушивающее, обучающее и пересылающее состояние порта. Это первое различие между spanning tree и rapid spanning tree. Rapid spanning tree имеет только три состояния портов:
Отбрасывание;
Обучение;
Пересылка.
Вы уже знакомы с состоянием порта в режиме обучения и пересылки, но отбрасывание - это новое состояние порта. В основном он объединяет в себе блокировку и прослушивание состояния порта.
Вот хороший обзор с различными состояниями портов для spanning tree и rapid spanning tree. В таблице отображено состояние портов: активны ли они и узнают ли они MAC-адреса или нет.
Помните ли вы все остальные роли портов, которые есть у spanning tree? Давайте сделаем небольшой обзор, и будет показано отличие от rapid spanning tree.
Коммутатор с лучшим ID моста (priority + MAC -адрес) становится корневым мостом. Другие коммутаторы (non-root) должны найти кратчайший путь стоимости к корневому мосту. Это корневой порт. Здесь нет ничего нового, все это работает аналогично и в rapid spanning tree.
На каждом сегменте может быть только один назначенный порт, иначе мы получим петлю. Порт станет назначенным портом, если он сможет отправить лучший BPDU. Коммутатор А, как корневой мост, всегда будет иметь лучшие порты, поэтому все интерфейсы будут назначены. Интерфейс fa0/16 на коммутаторе B будет назначенным портом в моем примере, потому что он имеет лучший идентификатор моста, чем коммутатор C. Здесь все еще нет ничего нового по сравнению с классическим связующим деревом.
Коммутатор C получает лучшие BPDU на своем интерфейсе fa0/16 от коммутатора B, и таким образом он будет заблокирован. Это альтернативный порт, и это все еще то же самое, что и для rapid spanning tree.
Вот вам новый порт, взгляните на интерфейс fa0/17 коммутатора B. Он называется резервным портом и является новым для rapid spanning tree. Однако вы вряд ли увидите этот порт в производственной сети. Между коммутатором B и коммутатором C был добавлен хаб. Обычно (без промежуточного концентратора) оба fa0/16 и fa0/17 будут назначены портами. Из-за хаба интерфейсы fa0/16 и fa0/17 коммутатора B теперь находятся в одном домене коллизий. Fa0/16 будет выбран в качестве назначенного порта, а fa0/17 станет резервным портом для интерфейса fa0/16. Причина, по которой коммутатор B видит интерфейс fa0/17 в качестве резервного порта, заключается в том, что он получает свои собственные BPDU на интерфейсах fa0/16 и fa0/17 и понимает, что у него есть два соединения с одним и тем же сегментом. Если вы удалите хаб, то fa0/16 и fa0/17 будут назначены портами точно так же, как classic spanning tree.
BPDU отличается для rapid spanning tree. В classic spanning tree поле flags использовало только два бита:
Topology change.;
Topology change acknowledgment.;
Теперь используются все биты поля flags. Роль порта, который создает BPDU, будет добавлена с помощью поля port role, оно имеет следующие параметры:
Unknown;
Alternate / Backup port;
Root port;
Designated port.
Эта BPDU называется BPDUv2. Коммутаторы, работающие со старой версией spanning tree, проигнорируют эту новую версию BPDU. Если вам интересно ... rapid spanning tree и старое spanning tree совместимы! Rapid spanning tree способно работать с коммутаторами, работающими под управлением более старой версии spanning tree.
Что поменялось
BPDU теперь отправляются каждый hello time. Только корневой мост генерирует BPDU в classic spanning tree, и они ретранслировались non-root, если они получали его на свой корневой порт. Rapid spanning tree работает по-разному...все коммутаторы генерируют BPDU каждые две секунды (hello time). Это hello timeпо умолчанию, но вы можете его изменить.
classic spanning tree использует максимального время жизни (20 секунд) для BPDU, прежде чем они будут отброшены. Rapid spanning работает по-другому! BPDU теперь используются в качестве механизма поддержания активности, аналогичного тому, что используют протоколы маршрутизации, такие как OSPF или EIGRP. Если коммутатор пропускает три BPDU от соседнего коммутатора, он будет считать, что подключение к этому коммутатору было потеряно, и он немедленно удалит все MAC-адреса.
Rapid spanning tree будет принимать низшие BPDU. Classic spanning tree игнорирует их. Скорость перехода (время сходимости) является наиболее важной характеристикой rapid spanning tree. Classic spanning tree должно было пройти через состояние прослушивания и обучения, прежде чем оно переведет интерфейс в forwarding состояние, это занимает 30 секунд (таймер по умолчанию). Classic spanning было основано на таймерах.
Rapid spanning не использует таймеры, чтобы решить, может ли интерфейс перейти в forwarding состояние или нет. Для этого он будет использовать переговорный (negotiation) механизм. Чуть позже я покажу вам, как это работает.
Помните ли вы понятие portfast? Если мы включим portfast во время запуска classic spanning tree, оно пропустит состояние прослушивания и обучения и сразу же переведет интерфейс в forwarding состояние. Помимо перевода интерфейса в forwarding состояние, он также не будет генерировать изменения топологии, когда интерфейс переходит в состояние UP или DOWN. Мы все еще используем portfast для rapid spanning tree, но теперь он называется пограничным портом (edge port).
Rapid spanning tree может только очень быстро переводить интерфейсы в forwarding состояние на edge ports (portfast) или интерфейсы типа point-to-point. Он будет смотреть на link type, и есть только два ink types:
Point-to-point (full duplex);
Shared (half duplex).
Обычно мы используем коммутаторы, и все наши интерфейсы настроены как full duplex, rapid spanning tree видит эти интерфейсы как point-to-point. Если мы введем концентратор в нашу сеть, то у нас будет half duplex, который рассматривается как shared interface к rapid spanning-tree.
Позвольте мне описать механизм быстрой синхронизации spanning tree, используя рисунок выше. Коммутатор А сверху - это корневой мост. Коммутатор B, C и D- некорневые мосты (non-root).
Как только появится связь между коммутатором А и коммутатором B, их интерфейсы будут находиться в режиме блокировки. Коммутатор B получит BPDU от коммутатора A, и теперь будет происходить согласование, называемое синхронизацией.
После того, как коммутатор B получил BPDU от корневого моста, он немедленно блокирует все свои порты, не обозначенные в списке non-edge. Non-edge порты - это интерфейсы для подключения к другим коммутаторам, пока edge порты- интерфейсы, настроены как portfast. Как только коммутатор B блокирует свои non-edge порты, связь между коммутатором A и коммутатором B переходит в forwarding состояние.
Коммутатор B также выполнит операцию синхронизации как с коммутатором C, так и с коммутатором D, чтобы они могли быстро перейти в forwarding состояние.
Главное, что следует усвоить здесь, заключается в том, что rapid spanning tree использует этот механизм синхронизации вместо механизма "таймера", который использует classic spanning tree (прослушивание → обучение → forwarding).
Давайте увеличим масштаб механизма синхронизации rapid spanning tree, подробно рассмотрев коммутатор A и коммутатор B. Сначала интерфейсы будут заблокированы до тех пор, пока они не получат BPDU друг от друга. В этот момент коммутатор B поймет, что коммутатор A является корневым мостом, потому что он имеет лучшую информацию BPDU. Механизм синхронизации начнется, потому что коммутатор А установит proposal bit в поле flag BPDU.
Коммутатор B получает предложение от коммутатора A и понимает, что он должен что-то сделать. Он заблокирует все свои non-edge интерфейсы и запустит синхронизацию в направлении коммутатора C и коммутатора D.
Как только коммутатор B перевед свои интерфейсы в режим синхронизации, это позволит коммутатору А узнать об этом, отправив соответствующее соглашение.
Это соглашение является копией proposal BPDU, где proposal bit, был switched off, а agreement bit - switched on. Интерфейс fa0/14 на коммутаторе B теперь перейдет в режим forwarding.
Как только коммутатор A получит соглашение от коммутатора B, он немедленно переведет свой интерфейс fa0/14 в режим пересылки. А как насчет интерфейса fa0 / 16 и fa0 / 19 на коммутаторе B?
Точно такой же механизм синхронизации будет иметь место и сейчас на этих интерфейсах. Коммутатор B направит предложение по своим интерфейсам fa0/16 и fa0/19 в сторону коммутатора C и коммутатора D.
Коммутатор C и коммутатор D не имеют никаких других интерфейсов, поэтому они отправят соглашение обратно на коммутатор B.
Коммутатор B переведет свои интерфейсы fa0/16 и fa0/19 в режим forwarding, и на этом мы закончим. Этот механизм синхронизации - всего лишь пара сообщений, летающих туда-сюда, и очень быстро, это намного быстрее, чем механизм на основе таймера classic spanning tree!
Что еще нового в rapid spanning tree?
Есть еще три вещи:
UplinkFast;
Механизм изменения топологии;
Совместимость с классическим связующим деревом.
Когда вы настраиваете classic spanning tree, вы должны включить UplinkFast самостоятельно. Rapid spanning tree использует UpLinkFast по умолчанию, вам не нужно настраивать его самостоятельно. Когда коммутатор теряет свой корневой порт, он немедленно переводит свой альтернативный порт в forwarding.
Разница заключается в том, что classic spanning tree нуждалось в multicast кадрах для обновления таблиц MAC-адресов всех коммутаторов.
Нам это больше не нужно, потому что механизм изменения топологии для rapid spanning tree отличается. Так что же изменилось в механизме изменения топологии?
С classic spanning tree сбой связи вызвал бы изменение топологии. При использовании rapid spanning tree сбой связи не влияет на изменение топологии. Только non-edge интерфейсы (ведущие к другим коммутаторам), которые переходят в forwarding состояние, рассматриваются как изменение топологии. Как только коммутатор обнаружит изменение топологии это произойдет:
Он начнет изменение топологии при значении таймера, которое в два раза превышает hello time. Это будет сделано для всех назначенных non-edge и корневых портов.;
Он будет очищать MAC-адреса, которые изучаются на этих портах.;
До тех пор, пока происходит изменение топологии, во время активности таймера, он будет устанавливать бит изменения топологии в BPDU, которые отправляются из этих портов. BPDU также будет отправлен из своего корневого порта.;
Когда соседний коммутатор получит этот BPDU с установленным битом изменения топологии, произойдет следующее:
Он очистит все свои MAC-адреса на всех интерфейсах, кроме того, на котором он получил BPDU с включенным изменением топологии.;
Он запустит изменение топологии во время самого таймера и отправит BPDU на все назначенные порты и корневой порт, установив бит изменения топологии.;
Вместо того, чтобы отправлять изменения топологии вплоть до корневого моста, как это делает classic spanning tree, изменение топологии теперь быстро распространяется по всей сети.
И последнее, но не менее важное, давайте поговорим о совместимости. Rapid spanning tree и classic spanning tree совместимы. Однако, когда коммутатор, на котором работает Rapid spanning tree, связывается с коммутатором, на котором работает classic spanning tree, все функции скоростной передачи данных не будут работать!
В приведенном выше примере у меня есть три коммутатора. Между коммутатором A и коммутатором B мы запустим rapid spanning tree. Между коммутатором B и коммутатором C мы вернемся к classic spanning tree.

Ваш клиент хочет перестроить свою систему IP-телефона или, возможно, впервые перейти на нее. Вы придете к нему с проприетарной системой, например, CUCM, или открытой стандартной системой, например, Asterisk? Прежде чем сделать выбор, важно не упускать сразу ни один из вариантов. Понимание всех входов и выходов каждого типа системы, а также конкретных требований вашего клиента имеет важное значение.
Давайте рассмотрим некоторые сильные и слабые стороны каждого подхода.
Положительные и отрицательные стороны открытых АТС
АТС с открытым стандартом являются решениями с открытым стеком, использующими стандартный подход - например, SIP - для передачи мультимедийных сообщений. Широко распространенные и признанные благодаря своей универсальности в использовании и гибкости, системы АТС с открытым стандартом не имеют многих недостатков для многих предприятий сегодня. Наряду с необходимыми функциями телефонии, некоторые передовые решения, также предлагают высококачественные унифицированные коммуникации из коробки. В целом системы АТС с открытым стандартом обеспечивают:
Лучшее соотношение цены и качества:
Опенсорс АТС часто ассоциируется с существенной экономией, потому что ею легко управлять, и в большинстве случаев нужно беспокоиться о небольших лицензионных сборах. По сравнению с запатентованными решениями, которые заключают вас в долгосрочные контракты на обслуживание или дорогостоящий ремонт системы, решения с открытыми стандартами могут быть более рентабельными во многих бизнес-сценариях.
Устранить риск блокировки поставщика:
Истинная ценность таких АТС заключается в возможности сочетать набор стандартных компонентов для предоставления инновационных услуг. С системой можно использовать практически любой SIP-телефон, шлюз или периферийные устройства на основе стандарта, что способствует удовлетворенности пользователей и производительности бизнеса.
Проще установить и настроить:
Если вы используете проприетаруню телефонную систему, вы, вероятно, уже знаете о трудностях, возникающих при ее установке, использовании и обслуживании. Вместо этого системы АТС открытого стандарта просты в использовании и управлении. Это может быть особенно актуально для тех, кто использует Asterisk с интуитивно понятным интерфейсом.
Совместимость и настройка:
Кастомизация очень важна для телефонных систем. И на этом этапе выигрывают АТС открытого стандарта. Относительно легко интегрироваться с другими стандартными приложениями, такими как базы данных, CRM, PMS отеля, колл-центр и другие, чтобы удовлетворить специфические потребности клиентов.
Хотя АТС с открытым стандартом, по большому счету, не имеют многих недостатков, качество всей системы сильно зависит от поставщиков и интеграторов. Некоторые, выбравшие бесплатные открытые решения утверждают, что им не хватает нужных функций, профессиональной поддержки и частых обновлений.
Положительные и отрицательные стороны проприетарной АТС
Проприетарной АТС являются «закрытой» системой, разработанной специально производителями, в комплекте с собственным брендом. Большинство проприетарных решений, таких как NEC или Panasonic, считаются относительно надежными, но менее привлекательными с финансовой точки зрения. С проприетарной системой вы получаете практически все ваше оборудование и программное обеспечение от одного поставщика, который будет поддерживать и гарантировать все, от АТС до мобильных телефонов. Таким образом, некоторые из преимуществ включают в себя:
Единый пользовательский опыт:
В большинстве случаев проприетарные системы предлагают единый пользовательский интерфейс. Вся система VoIP остается согласованной для всех совместимых аппаратных и программных приложений. Таким образом, вы можете ожидать аналогичного и знакомого взаимодействия с каждым устройством.
Поддержка производителя:
Благодаря проприетарной системе ваш поставщик имеет единоличный контроль над обновлениями, обновлениями и модификациями. Как следствие, вы, как торговый посредник или дистрибьютор, могли бы иметь больший контроль над клиентами, но вам нужно будет вкладывать больше ресурсов в освоение сложных запатентованных систем и интерфейсов для лучшей поддержки клиентов.
Наряду с преимуществами проприетарного решения, есть некоторые недостатки, которыми нельзя пренебрегать. Самые большие из них могут быть связаны с затратами, риском блокировки поставщиков и ограниченной гибкостью. Многие запатентованные продукты могут функционировать должным образом только при использовании с другими продуктами того же производителя. Другими словами, вы, скорее всего, будете заложниками проприетарных мобильных телефонов и периферийных устройств, которые могут быть переоценены с ограниченной функциональностью, что приведет к негативным последствиям в процессе продаж.
Еще одна важная вещь, которую следует помнить, это то, что с проприетарной системой АТС вы не сможете достичь того же уровня гибкости, что и решения с открытыми стандартами. Поскольку проприетарные решения обычно не допускают обходных путей для разработчиков, специфичных для данной проблемы, скорее всего, вы не сможете реализовать наименьшие изменения, необходимые для лучшей адаптации решения к потребностям вашего бизнеса. И когда возникают сложные проблемы, ваш поставщик является вашей единственной резервной копией.
Предвидение: бизнес-экосистема и возможности
В условиях постоянно расширяющегося горизонта и достижений на рынке VoIP ключом к тому, чтобы телефонная система оставалась впереди, было стремление идти в ногу с рыночными тенденциями и предлагать жизнеспособные решения, чтобы вписаться в более широкий спектр потребностей клиентов. И нельзя отрицать, что решения открытых стандартов имеют конкурентные преимущества.
Роль собственности как первичного новатора на рынке ушла на второй план. Распространенность промышленных открытых стандартов, таких как SIP и телефония с открытым исходным кодом, таких как Asterisk, произвела революцию в экосистеме и принесла больше возможностей для бизнеса.
Используя коллективные усилия огромного мирового сообщества экспертов, новые непатентованные, то есть открытые, системы набирают обороты. Они приносят преимущества, связанные с открытым SIP и открытым исходным кодом: стабильность, быстрое развитие, гибкость и, самое главное, экономия затрат.
Благодаря постоянно развивающимся решениям открытого стандарта пользователям теперь предоставляется больше свободы для взаимодействия нескольких приложений и интеграции систем данных. Интеграторы все чаще хотят их, а конечные пользователи требуют от них более высокого уровня соотношения цена-качество и устранения риска привязки к поставщику.
Итого
И проприетарные, и открытые стандартные системы имеют свои явные преимущества. Важно знать своих клиентов и понимать их потребности. Сколько они могут позволить себе новую телефонную систему? Какой уровень гибкости и настройки они требуют? Есть ли у них собственный опыт по обслуживанию системы? Задавая правильные вопросы, вы сможете сделать выбор, чтобы предложить наилучшее решение.

DNS спуфинг (spoofing), так же известный как отравление DNS кэша (cache poisoning), вид атаки, когда DNS кэш заполняется поддельными данными, в результате чего пользователь перенаправляется на вредоносный сайт.
Отравление DNS-кэша является результатом уязвимостей, которые позволяют преступникам отправлять поддельные DNS-ответы, которые серверы доменных имен (DNS - Domain Name Server) сохраняют в своих кэшах.
Обычно скомпрометированная запись перенаправляет пользователя на поддельный веб-сайт, который злоумышленники используют для совершения преступных действий, таких как распространение вредоносных программ или кража реквизитов кредитных карт, паролей, финансовых данных или другой конфиденциальной и частной информации.
При отравлении DNS-кэша сервер кэша DNS сохраняет нелегитимный адрес, предоставленный злоумышленником, а затем выдает его пользователям, запрашивающим подлинный веб-сайт. В большинстве случаев он может выглядеть аналогично аутентичному веб-сайту, поэтому посетителям становится сложнее отличить поддельный сайт от настоящего.
Влияние отравления DNS-кэша
DNS спуфинг, обычно трудно обнаружить и может оказать большое негативное влияние, особенно для популярных веб-сайтов или веб-приложений со большим количеством посещений или зарегистрированными пользователями. Это представляет большой риск, особенно в некоторых чувствительных отраслях, таких как банковская, медицинская, онлайн-ритейл, электронная коммерция и другие.
Например, предполагается, что злоумышленникам удается изменить DNS-записи и IP-адреса для Amazon. Затем они направляют запрос на другой сервер с поддельным IP, который контролируют или принадлежит злоумышленникам. Любой человек, пытающийся получить доступ к подлинному сайту Amazon, будет перенаправлен на неправильный адрес, который может содержать вредоносные программы для кражи конфиденциальной информации.
Кроме веб-сайтов, злоумышленник может вставить поддельный адрес для сервера электронной почты или других веб-приложений, таких как банковские приложения.
Поскольку изменения в DNS регулярно распространяются с одного сервера на другой, отравленный кэш может распространяться на другие DNS-серверы и системы, что приводит к большому ущербу. Например, поддельная запись может быстро распространяться на другие машины, такие как DNS-серверы Интернет-провайдеров, которые затем будут хранить ее в своем кэше. Отсюда он распространяется дальше на оборудования пользователей, такое как браузеры, мобильные телефоны и маршрутизаторы, которые также будут хранить поддельную запись в своих кэшах.
Как работает атака отравление DNS-кэша?
Преступники могут отравить кэш DNS с помощью различных методик.
Во время обычных операций DNS-запросы хранятся или кэшируются в базе данных, которую пользователи веб-сайтов могут запрашивать в режиме реального времени. Как правило, база данных DNS содержит список имен Интернета и соответствующих IP-адресов. И это облегчает поиск и доступ к веб-сайтам с использованием имен в отличие от IP-адресов, что может быть очень сложным и запутанным.
Например, без системы DNS пользователям потребуется запомнить строку чисел, составляющих IP-адреса для всех веб-сайтов, которые они хотят посетить.
К сожалению, DNS имеет несколько недостатков в безопасности, которые злоумышленники могут использовать и вставлять в систему поддельные записи адресов интернет-домена. Обычно преступники отправляют на DNS-сервер поддельные ответы. Затем сервер отвечает пользователю, сделавшему запрос, и одновременно законные серверы кэшируют поддельную запись. Как только сервер кэша DNS сохранит поддельную запись, все последующие запросы на скомпрометированную запись получат адрес сервера, управляемого злоумышленником.
Отравление DNS-кэша в целом состоит из внедрения поврежденных записей в базу данных кэша сервера имен, и злоумышленники используют различные методы. К ним относятся:
Когда пользователь веб-сайта или веб-приложения отправляет запрос на определенный домен через браузер или онлайн-приложение, DNS-сервер сначала проверяет, существует ли запись в кэше. Если он не сохранен, он запросит информацию у авторитетных DNS-серверов, а затем ждет ответа. В течение некоторого времени злоумышленники будут использовать этот узкий период ожидания, временно брать на себя роль исходного DNS и выдавать поддельный ответ до того, как авторитетный сервер отправит подлинный адрес. Однако, поскольку период ожидания обычно очень короткий, показатель успеха очень низкий.
Другой способ включает отправку поддельных ответов от DNS-сервера, олицетворяющего легитимный. Поскольку проверка DNS обычно не выполняется, злоумышленники могут подделать ответ от DNS-распознавателя по мере запроса сервера имен. Это также становится возможным благодаря тому, что DNS-серверы используют протокол пользовательских датаграмм (UDP) вместо TCP. Обычно связь DNS небезопасна из-за незашифрованной информации в пакетах UDP и отсутствия аутентификации. Это облегчает злоумышленникам вставлять в ответы поддельные адреса.
Уязвимости DNS используемые злоумышленниками
Уязвимости безопасности в определенных веб-приложениях, а также отсутствие надлежащей аутентификации DNS-записей позволяют киберпреступникам легко скомпрометировать ответы DNS и остаться незамеченными. Некоторые из этих уязвимостей включают в себя:
Отсутствие проверки и валидации
DNS имеет первую структуру доверия, которая не требует проверки IP-адреса для подтверждения его подлинности перед отправкой ответа. Поскольку DNS-распознаватели не проверяют данные в кэше, там остается неверная запись, пока она не будет удалена вручную или не истечет срок действия TTL.
Уязвимость рекурсивного DNS-сервера
Когда рекурсивный запрос активен, DNS-сервер получает запрос и выполняет всю работу по поиску правильного адреса и отправке ответа пользователю. Если у него нет записи в кэше, он будет запрашивать ее у других DNS-серверов от имени клиента, пока не получит адрес и не вернет его пользователю. Включение рекурсивного запроса представляет уязвимость безопасности, которую злоумышленники могут использовать для отравления кэша DNS.
Поскольку сервер ищет адрес, он предоставляет злоумышленнику возможность перехватить трафик и предоставить поддельный ответ. Затем рекурсивный DNS-сервер отправит ответ пользователю и одновременном сохранит поддельный IP-адрес в кэше.
Отсутствие шифрования
Как правило, протокол DNS не зашифрован, и это облегчает злоумышленникам перехват его трафика. Кроме того, серверы не должны проверять IP-адреса, на которые они направляют трафик, следовательно, они не могут определить, является ли он подлинным или поддельным.
Как предотвратить DNS спуфинг?
Мониторинг данных DNS в реальном времени может помочь установить наличие в трафике необычных шаблонов, действий пользователей или поведения, таких как посещение вредоносных веб-сайтов. И хотя обнаружение отравления DNS-кэшем затруднено, существует несколько мер безопасности, и компании и поставщики услуг могут принять меры, чтобы предотвратить это. Некоторые из мер, предотвращающих отравление DNS-кэша, включают использование DNSSEC, отключение рекурсивных запросов и многое другое.
Предельный уровень отношений доверия
Одной из уязвимостей DNS-транзакций являются отношения высокого доверия между различными DNS-серверами. Это означает, что серверы не проверяют подлинность получаемых ими записей, что позволяет злоумышленникам даже отправлять поддельные ответы со своих нелегитимных серверов.
Чтобы злоумышленники не использовали этот недостаток, группы безопасности должны ограничить уровень доверительных отношений, которые имеют их DNS-серверы с другими. Настройка DNS-серверов таким образом, чтобы они не опирались на доверительные отношения с другими DNS-серверами, затрудняет использование киберпреступниками DNS-сервера для компрометации записей на законных серверах.
Существует множество инструментов для проверки наличия угроз безопасности DNS.
Использование протокола DNSSEC
Расширения безопасности системы доменных имен (DNSSEC - Domain Name System Security Extensions) используют криптографию с открытым ключом для подписи DNS-записей, поэтому они добавляют функцию проверки и позволяют системам определять, является ли адрес законным или нет. Это помогает проверять и аутентифицировать подлинность запросов и ответов и тем самым предотвращать подделку.
При обычной работе протокол DNSSEC связывает уникальную криптографическую подпись с другой информацией DNS, такой как записи CNAME и A. Затем DNS-распознаватель использует эту подпись для проверки подлинности DNS-ответа перед отправкой его пользователю.
Подписи безопасности гарантируют, что ответы на запросы, которые получают пользователи, проверяются законным исходным сервером. Хотя DNSSEC может предотвратить отравление кэша DNS, он имеет такие недостатки, как сложное развертывание, предоставление данных и уязвимость перечисления зон в более ранних версиях.
Не уверены, что в вашем домене включен DNSSEC? Немедленно проверьте с помощью инструмента DNSSEC Test.
Используйте последние версии программного обеспечения DNS и BIND (Berkeley Internet Name Domain)
BIND версии 9.5.0 или выше обычно имеет расширенные функции безопасности, такие как криптографически безопасные идентификаторы транзакций и рандомизация портов, что помогает минимизировать отравление DNS-кэша. Кроме того, ИТ-специалисты должны поддерживать программное обеспечение DNS в актуальном состоянии и гарантировать, что оно является самой последней и безопасной версией.
Помимо вышеизложенного, ниже приведены другие эффективные способы или практики предотвращения отравления DNS-кэшем.
Настройка DNS-сервера для ответа только информацией, относящейся к запрошенному домену
Убедитесь, что на сервере кэша хранятся только данные, относящиеся к запрошенному домену
Принудительно использовать сети IP для всего трафика
Отключить функцию рекурсивных запросов DNS
Заключение
Отравление кэш-памяти DNS приводит к перенаправлению пользователей домена на вредоносные адреса. Некоторые серверы, управляемые злоумышленниками, могут обманывать ничего не подозревающих пользователей, которые загружают вредоносные программы или предоставляют пароли, информацию о кредитных картах и другие конфиденциальные личные данные. Для предотвращения этого важно использовать передовые методы обеспечения безопасности.