По вашему запросу ничего не найдено :(
Убедитесь, что запрос написан правильно, или посмотрите другие наши статьи:
img
Как следует из названий, проприетарный протокол компании Cisco System EIGRP (Enhanced Interior Gateway Routing Protocol), это протокол «внутреннего шлюза». EIGRP имеет множество преимуществ по сравнению с протоколом RIP (Routing Information Protocol) и своим непосредственным предшественником, протоколом IGRP (Interior Gateway Routing Protocol). По существу, EIGRP это расширенная версия протокола IGRP. Как и RIP, IGRP известен как дистанционно – векторный протокол, но по сравнению с ним он имеет улучшенные характеристики алгоритма расчета оптимального пути до пункта назначения. Метрики IGRP основываются на таких параметрах как полоса пропускания и задержка, в тоже время для протокола RIP важным является длинна маршрута, выраженная в «хопах», то есть количестве узлов на пути следования. Протокол EIGRP включает в себя алгоритмы, которые часто встречаются в продвинутых протокол маршрутизации, которые работают по принципу «состояния канала». EIGRP использует оптимизированный по сравнению с RIP и IGRP метод предотвращения петель в сети, обеспечивая 100 – процентную гарантию отсутствия петель. Важное преимущество EIGRP – это высокий показатель масштабируемости и высокая скорость сходимости сети. Итак, давайте разберем конкретные преимущества EIGRP по сравнению с IGRP: Быстрая сходимость Поддержка CIDR (бесклассовая адресация) и VLSM (маска подсети переменной длины) Использует более совершенный алгоритм DUAL (Diffusing Update Algorithm), для определения качества того или иного маршрута. Может использовать маршруты других протоколов маршрутизации. Протокол совместим с IGRP и может выполнять маршрутизацию таких протоколов как IPX и Apple AppleTalk EIGRP представляется как гибридный протокол, который содержит в себе как функционал дистанционно – векторного протокола маршрутизации, так и «состояния канала». Перечислим следующие характеристики: EIGRP использует множество метрик для определения качества маршрута в добавок к «дистанции»: Полоса пропускания и задержка (метрики по умолчанию) Надежность, загрузка, MTU (опциональные метрики) Оценка качества маршрута с помощью DUAL2 EIGRP, как и протокол OSPF, отправляет сообщения об изменении маршрутизации только тогда, когда в сети случаются какие-либо изменения (для сравнения, RIP и IGRP обновляет широковещательные сообщения периодически) Протокол EIGRP в рамках сходимости, обменивается только «Hello» сообщениями с соседними маршрутизаторами. EIGRP не поддерживается на маршрутизаторах других компаний, кроме Cisco. EIGRP использует следующие административные значения для маршрутов: Значение 90, для маршрутов полученных по EIGRP Значение 170, для маршрутов полученных в рамках других протоколов маршрутизации Компоненты EIGRP Протокол EIGRP (Enhanced Interior Gateway Routing Protocol) состоит из 4 – х важных компонентов: Обнаружение соседей Речь пойдет о технологии, которую используют маршрутизаторы Cisco чтобы обнаружить присутствие напрямую подключенных маршрутизаторов соседей. Процесс обнаружения, позволяет маршрутизаторам использовать небольшие пакеты с маленькой нагрузкой, в рамках которых они передают сообщения «Hello». Отправка подобных пакетов позволяет определить, нормально ли функционирует сосед, или же он недоступен. Маршрутизатор отвечает на эти сообщения, и только после этого маршрутизаторы начинают работу. В случае не ответа, маршрутизатор считается неактивным и процесса коммуникаций не происходит. Reliable Transport Protocol (RTP) Или другими словами, надежный транспортный протокол. Обеспечивает надежную и гарантированную доставку юникаст или мультикаст сообщения соседям маршрутизаторам. В рамках эффективного использования RTP, маршрутизаторы используют его только по необходимости. DUAL алгоритм Алгоритм маршрутизации, который используется EIGRP для расчета, определения и отслеживания маршрутов без петель. DUAL использует метрики для определения наиболее оптимального маршрута основываясь на «feasible successor» (или «возможный приемник»,о котором мы расскажем во второй части статьи). Дополнительные модули протокола Независимые модули, которые используются протоколом EIGRP в рамках сетевого уровня модели OSI для отправки и получения сообщений. Модуль IP для протокола EIGRP носит название IP-EIGRP и предназначен для отправки и получения EIGRP пакетов инкапсулированных в IP – пакеты. IP-EIGRP взаимодействует с DUAL для вычисления маршрутов, которые в дальнейшем хранятся в таблицах маршрутизации. Во второй части статьи мы продолжим рассказ о таблицах маршрутизации EIGRP
img
В этой статье расскажем о различных концепциях и стратегиях, которые реализуют многие организации для защиты своих активов как от внутренних, так и от внешних киберугроз. Вы узнаете об этих трех основных принципах, и о том, как они используются в различных организациях. Кроме того, вы узнаете о ключевых терминах безопасности и моделях контроля доступа. При подключении устройства к сети и Интернету, организации открывают двери для хакеров, которые могут проникнуть в их сеть и нанести ущерб. Есть много организаций, которые используют только брандмауэр в своей сети и поэтому думают, что и их внутренняя сеть, и пользователи защищены от угроз в Интернете. Брандмауэр, как единственное сетевое устройство, развернутое между внутренней сетью и Интернетом, — это просто первый уровень безопасности для всей организации. Многие люди задаются вопросом: а не достаточно ли брандмауэра для фильтрации вредоносного входящего и исходящего трафика? Много лет назад ответ был бы однозначно «да». Однако, поскольку хакеры всегда ищут новые стратегии для проникновения в сеть, мы не можем полагаться только на один уровень безопасности для защиты наших активов. Ответ на этот вопрос уже не является однозначным «да» просто потому, что существует много типов трафика, которые используют небезопасные сетевые протоколы для обмена сообщениями между источником и получателем. Ниже приведены лишь некоторые из многих вопросов, которые должен задать специалист по кибербезопасности: Осуществляет ли организация активный мониторинг сообщений Domain Name System (DNS) на предмет угроз? Есть ли в организации какие-либо решения для обеспечения безопасности, защищающие входящие и исходящие сообщения электронной почты компании? Если в сети происходит кибератака, существуют ли системы для упреждающего блокирования и оповещения отдела информационных технологий? Есть ли в организации специальная группа или человек по безопасности для управления общей безопасностью всего предприятия? Существуют ли какие-либо политики безопасности и технические средства контроля для защиты внутренней сети? Многие поставщики систем безопасности используют маркетинговые стратегии и используют модные слова (buzzwords), чтобы повлиять на потенциальных клиентов для приобретения их устройств безопасности «все в одном». Ключевой момент, который упускают многие не осведомленные клиенты, — это то, как решение или продукт безопасности будет защищать всех пользователей и все типы трафика, защищать их при использовании небезопасных протоколов и так далее. Примером может служить использование endpoint protection (защиты конечных точек). Вы можете рассматривать это решение как антивирусное программное обеспечение с централизованным управлением для администратора. Хотя многие решения для защиты от вредоносных программ конечных точек предлагают расширенные функции. Это все еще первый уровень безопасности, который просто защищает хост. Не все решения для защиты конечных точек или антивирусы, защищают от угроз, связанных, например с электронной почтой. Проще говоря, организация не может полагаться только на один подход для защиты своих активов, ей нужен многоуровневый подход, известный как Глубокая защита (Defense in Depth - DiD). Стратегия DiD подразумевает, что один уровень безопасности не должен использоваться в качестве единственной меры противодействия кибератакам. Если этот единственный уровень не сможет защитить сеть, тогда все (активы) будут открыты для взлома хакерами. В DiD реализован многоуровневый подход для защиты всех активов от различных типов кибератак, где, если один уровень не может защитить актив, то есть другой уровень для обеспечения безопасности. Эту тактику наслаивания придумали в Агентстве национальной безопасности (NSA) как комплексный подход к информационной и электронной безопасности. А изначально - это военная стратегия, которая направлена на то, чтобы заставить атакующего тратить как можно больше времени на преодоление каждого уровня защиты, нежели предотвратить наступление противника. Концепция Defense in Depth делит организацию защиты инфраструктуры на три контролируемые части: Физическая: сюда относятся все меры по ограничению физического доступа к ИТ-инфраструктуре неавторизованных лиц. Например, охранник офиса, системы СКУД, камеры видеонаблюдения, сигнализация, телекоммуникационные шкафы с замками и так далее. Техническая: сюда относятся все хардварные и софтовые средства защиты информации, призванные контролировать сетевой доступ к объектам информационной системы, межсетевой экран, средства антивирусной защиты рабочих станций, прокси-серверы, системы аутентификации и авторизации. Административная: сюда относятся все политики и процедуры информационной безопасности, принятые в организации. Данные документы призваны регулировать управление защитой, распределение и обработку критичной информации, использование программных и технических средств в компании, а также взаимодействие сотрудников с информационной системой, сторонними организациями и другими внешними субъектами. Многоуровневый подход -это как защита короля в его замке. Если произойдет нападение, захватчикам потребуется пройти несколько уровней обороны, включая стражей на входе и другие препятствия, прежде чем они смогут добраться до короля (актива). Чтобы лучше понять важность DiD, давайте углубимся в изучение трех основных принципов информационной безопасности, так называемой триады CIA: Конфиденциальность (Confidentiality) Целостность (Integrity) Доступность (Availability) Каждый принцип играет жизненно важную роль в обеспечении информационной безопасности любой организации. В следующем подразделе вы узнаете о характеристиках конфиденциальности, целостности и доступности, а также о том, как они используются в отрасли для обеспечения безопасности наших сетей. Конфиденциальность Поскольку все больше людей подключаются к сетям и обмениваются информацией, будь то их частная сеть дома, корпоративная сеть в офисе или даже Интернет, конфиденциальность является серьезной проблемой. Каждый день организации генерируют новые данные, отправляя и получая сообщения между устройствами. Представьте себе организацию, которая использует электронную почту в качестве единственной платформы обмена сообщениями. Каждый человек создает сообщение электронной почты, которое является данными, и эти данные используют некоторое пространство для хранения в локальной системе. Когда адресат получает электронное письмо, оно сохраняется на компьютере получателя. Важно, чтобы сообщение получили только те, кому оно адресовано, посторонние лица его увидеть не должны. Когда эти данные передаются по сети, их также можно перехватить. Поэтому специалист по безопасности также должен принимать во внимание следующие вопросы: является ли соединение безопасным? Является ли протокол связи безопасным? Является ли сеть безопасной? Конфиденциальность (Confidentiality) гарантирует, что сообщения и другие данные будут храниться в тайне от посторонних лиц или устройств. В области информационных технологий конфиденциальность реализуется в виде шифрования данных. Люди используют устройства для выполнения задач, будь то отправка электронной почты, загрузка файла или даже отправка сообщения в мессенджере со смартфона. Важно всегда защищать эти сообщения. Данные обычно существуют в следующих состояниях: Данные в состоянии покоя Данные в движении (транзит) Используемые данные Данные в состоянии покоя — это данные, которые не используются ни приложением, ни системой. В данный момент они хранятся на носителях, таких как жесткий диск (HDD) в локальной или удаленной системе. Когда данные находятся в состоянии покоя, они уязвимы для злоумышленников, пытающихся либо украсть, либо изменить их. Специалисты по безопасности реализуют как методы аутентификации, так и алгоритмы шифрования для защиты любых данных в состоянии покоя. Примером может служить использование BitLocker в операционной системе Microsoft Windows 10, которая позволяет администратору создавать зашифрованный контейнер, а затем пользователь может поместить файлы в эту специальную область памяти и заблокировать ее. После того, как содержимое BitLocker заблокировано (закрыто) пользователем, и контейнер, и его содержимое шифруются. Следовательно, доступ предоставляется только в том случае, если пользователь предоставляет правильные учетные данные для открытия и расшифровки содержимого. Если злоумышленник украдет зашифрованный контейнер, он не сможет просмотреть содержимое из-за шифрования данных. Данные в движении определяются как данные, которые передаются между источником и пунктом назначения. Представьте, что есть сотрудники, которые работают дистанционно или работают в удаленном месте вдали от офиса. Этим людям может потребоваться часто подключаться к корпоративной сети для доступа к сетевым ресурсам, например, при доступе или работе с документами, находящимися на файловом сервере. Как специалисты в области кибербезопасности, мы должны быть осведомлены о том, какие типы защиты или механизмы безопасности существуют для защиты данных, передаваемых между устройством пользователя и файловым сервером. Кроме того, устройства отправляют и получают сообщения почти каждую секунду, и некоторые из этих сообщений обмениваются с использованием небезопасных протоколов, что позволяет злоумышленнику перехватывать сообщения (данные) по мере их передачи по сети. Если данные передаются по сети в незашифрованном формате, злоумышленник может увидеть все содержимое в виде открытого текста и собрать конфиденциальную информацию, такую как логины и пароли. Это всего лишь несколько возможных ситуаций, которые могут возникнуть, когда данные находятся в движении. Некоторые рекомендуемые действия заключаются в том, чтобы всегда, когда это возможно, использовать защищенные сетевые протоколы и гарантировать, что удаленные сотрудники, используют виртуальную частную сеть (VPN) для шифрования трафика между устройством пользователя и корпоративной сетью. Чтобы лучше понять необходимость VPN, представьте, что организация имеет несколько филиалов и хочет «расшарить» ресурсы из головного офиса в удаленный филиал. Использование Интернета небезопасно, особенно для передачи корпоративных данных между филиалами. Одним из решений может быть использование Wide Area Network (WAN), предоставляемой интернет-провайдером (ISP). Если организация решает использовать WAN, это означает, что за эту услугу придется платить, а для некоторых компаний это решение может оказаться не по карману. В качестве альтернативы, если организация имеет подключение к Интернету и брандмауэры находятся в каждом офисе, специалист по безопасности может настроить VPN между двумя устройствами брандмауэра. Этот тип VPN известен как site-to-site VPN. На следующем рисунке показано представление site-to-site VPN: Как показано на рисунке, site-to-site VPN устанавливает безопасное зашифрованное соединение между головным офисом и удаленными филиалами через Интернет. Следовательно, любые сообщения, которые перемещаются между офисами, шифруются и отправляются через туннель VPN, защищая сообщения от неавторизованных пользователей. Существует также другой тип VPN - с удаленным доступом (remote access VPN). Этот тип позволяет пользователю установить VPN-туннель между конечным устройством, таким как ноутбук, и брандмауэром организации. Этот тип VPN позволяет сотрудникам, работающим дома или на ходу, безопасно подключаться к сети организации и получать доступ к сетевым ресурсам. Имейте в виду, что на устройстве сотрудника должен быть установлен VPN-клиент, который используется для установления безопасного соединения между компьютером и корпоративным брандмауэром. На следующем рисунке приведен пример VPN с удаленным доступом: Используемые данные — это данные, к которым в данный момент обращается или использует приложение. В этом состоянии данные наиболее уязвимы. В качестве примера используемых данных представьте, что вы открываете PDF-документ с помощью приложения для чтения PDF-файлов. Прежде чем приложение сможет успешно открыть файл PDF, документ необходимо расшифровать, если файл защищен паролем. После ввода правильного пароля документ будет представлен пользователю в незашифрованном виде. Важно обеспечить постоянную безопасность системы и приложений, которые обращаются к данным и/или используют их. Таким образом, конфиденциальность — это защита ваших активов от посторонних лиц или устройств. Целостность Целостность (Integrity) играет важную роль в нашей повседневной жизни, это степень сформированности, собранности, проявление гармонии соотношения и взаимодействия частей. Вышло немного по-философски, но тот же принцип необходим и в сети. Представьте, что вы получили письмо от друга через местное отделение почты и открыв его, кажется, что с его содержимым все в порядке. Как получатель, вы могли бы предположить, что содержимое письма осталось неизменным в процессе доставки, но как вы можете проверить, было ли содержимое изменено человеком или устройством по пути? В сети очень важно обеспечить, чтобы данные или сообщения не изменялись в процессе передачи между источником и получателем. В кибербезопасности используются специальные алгоритмы хеширования, чтобы помочь пользователям и устройствам проверить, было ли сообщение изменено или нет при его передаче. Алгоритмы хеширования создают односторонний криптографический хэш (дайджест, он же контрольная сумма), который является математическим представлением сообщения. Это означает, что только это сообщение может выдавать одно и то же хэш-значение. Алгоритмы хеширования создают одностороннюю функцию, которая делает практически невозможным изменение и определение содержимого самого сообщения. На следующем рисунке показан процесс хеширования сообщения: Как показано на рисунке, сообщение проходит через криптографический алгоритм, который создаёт одностороннюю хэш-функцию сообщения. Когда пользователь или устройство хочет отправить сообщение адресату, и сообщение, и его хеш-значение упаковываются вместе и отправляются по сети. Когда получатель получает входящее сообщение, он выполняет свою собственную функцию хеширования сообщения и вычисляет его хеш-значение. Затем получатель сравнивает хеш-значение, полученное от отправителя, с хеш-значением, которое он высчитал. Если оба значения хеш-функций совпадают, это означает, что сообщение не было изменено во время передачи и целостность сохранена. Однако, если хэши не совпадают, это указывает на то, что сообщение было подвергнуто изменению, и получатель просто удалит его. Помимо этого, хэширование также помогает убедиться в том, что сообщение не было искажено в результате каких-либо сбоев или неполадок в сети. Доступность Существуют типы кибератак, которые блокируют или затрудняют доступ законных пользователей к ресурсу. Другими словами, злоумышленники пытаются нарушить доступность (availability) данных и ресурсов. В области кибербезопасности доступность гарантирует, что данные и ресурсы всегда доступны для пользователей и систем, которым разрешен доступ к этим ресурсам. Простым примером кибератаки, которая может быть использована для нарушения доступности сети, является атака «распределенный отказ в обслуживании» Distributed Denial of Service (DDoS). Этот тип атаки запускается из нескольких географических точек и нацелен на одну систему или сеть. Злоумышленник направляет к объекту атаки огромное количество легитимных запросов или другого типа трафика, в результате чего, система перегружается и становится неспособной обработать запросы от других пользователей. Цель состоит в том, чтобы сделать целевую систему или сеть непригодными для использования или недоступными для других пользователей. Cloudflare (www.cloudflare.com) обеспечивает неограниченную защиту от DDoS-атак для пользователей. Администратор может перенести свои записи DNS в Cloudflare для управления службами DNS. Таким образом, Cloudflare находится между общедоступным сервером и остальной частью Интернета. Если на ресурс будет направлен DDoS-трафик из любой точки мира, он должна будет проходить через сеть Cloudflare, что смягчит атаку. Возможно вы считаете, что для злоумышленников важно, чтобы сетевые ресурсы и данные были всегда доступны, чтобы их можно было взломать или украсть. Но на самом деле существуют злоумышленники, цель которых - сделать так, чтобы эти ресурсы не были больше доступны для пользователей. Просто представьте что злоумышленник взломает систему управления энергосистемой вашего города или района. Если хакеру удастся отключить эту систему, то не будет электричества, и это затронет большинство потребителей и организаций. В таких ситуациях важно, чтобы специалисты внедрили меры безопасности, которые смогут защитить критически важные процессы, системы и сети от взлома. Объединение трех принципов Некоторые организации ставят одни принципы выше других. Например, компания может больше внимание уделять на защите своих данных с помощью различных систем аутентификации и шифрования. Этот принцип фокусируется на конфиденциальности. Сосредоточение внимания на одном компоненте, таком как конфиденциальность, в большей степени, чем на других, повлечет меньшее внимание к другим - целостности и/или доступности. Вы можете задаться вопросом: и в чём здесь проблема? Представьте себе, что организация применяет самые строгие меры безопасности для предотвращения любого несанкционированного доступа к своим системам и сети. Чтобы авторизованный пользователь мог получить доступ к этим ресурсам, ему необходимо будет предоставить, возможно, несколько проверок своей личности, например, при многофакторной аутентификации (MFA), и даже пароли для открытия файлов. В результате доступ к ресурсам будет усложнен для всех, включая авторизованных пользователей, поэтому доступность немного пострадает. На следующем рисунке показана триада принципов и точка фокусировки в центре: Ключевой момент заключается в том, чтобы всегда обеспечивать баланс при реализации конфиденциальности, целостности и доступности в любой системе и сети. Важно уделять одинаковое внимание всем основным направлениям просто для того, чтобы не было недостатка ни в одном аспекте информационной безопасности.
img
В этой статье рассмотрим как решить следующие неисправности: Виртуальная машина не может подключиться к сети Нет связи между сетью и одной виртуальной машиной Невозможно подключиться к сети Интернет Сбой подключения к или от одной виртуальной машины через TCP/IP Вы видите одну или более из ошибок: Destination Host Unreachable Network error: Connection Refused Network cable is unplugged Ping request could not find host (IP address/hostname). Please check the name and try again Unable to resolve target system name (IP address/hostname). Решение Убедитесь, что каждый из последующих шагов подходит для вашей среды. Шаги включают в себя инструкции для выполнения и ссылки на документы для подтверждения шагов и дополнительных корректирующих мер, если они потребуются. Шаги выстроены в наиболее подходящем порядке для выявления и решения проблем. Не пропускайте шаги. Проверьте, что имя или имена Port Group, связанные с сетевыми адаптерам(и) виртуальной машины, существует и задано правильно. Если нет, то исправьте это с помощью Edit Settings на виртуальной машине, проверьте есть ли галочка напротив Connected. Удостоверьтесь в отсутствии проблем с хранилищем или ресурсами, так как это может вызывать неполадки с сетью на виртуальной машине. Это можно проверить на консоли виртуальной машины в ESX/ESXi or Virtual Center/vCenter Server через VI/vSphere Client. Убедитесь, что виртуальный сетевой адаптер присутствует и подключён. Проверьте правильно ли настроена сеть в гостевой системе на виртуальной машине. Проверьте правильно ли работает стек TCP/IP. Если данная виртуальная машина была создана из физической системы, то следует убедиться в отсутствии скрытых сетевых адаптеров. Убедитесь, что vSwitch на достаточно портов для виртуальной машины. Убедитесь, что конфигурация IPSec виртуальной машины выполнена правильно и не повреждена. Наличие двух виртуальных сетевых интерфейсных карт (vNIC) на виртуальной машине поможет исключить проблемы с сетевой интерфейсной картой (NIC) и физической конфигурацией. Чтобы найти возможную проблему: Если политика балансировки загрузки в режиме Default Virtual Port ID на уровне vSwitch и vDS - оставьте одну виртуальную сетевую интерфейсную карту (vNIC) подключённой к vSwitch или vDS и протестируйте различные комбинации виртуальных(vNIC) и физических (pNIC) сетевых интерфейсных карт, чтобы найти виртуальную машину с отсутствующим соединением. Если политика балансировки загрузки в режиме IP Hash: Убедитесь, что порты физического коммутатора настроены как порт-канал. Прты, к которым подключены сетевые интерфейсные карты (NICs), кроме одного и переключайтесь между всеми портами, включая за раз только один порт. Обратите внимание на комбинации портов и сетевых интерфейсных карт (NIC) при которых виртуальные машины теряют соединение. Также вы можете проверить выходные данные о работе сети с помощью команды esxtop с параметром n, чтобы найти используемую виртуальной машиной физическую сетевую интерфейсную карту (pNIC). Попробуйте отключать порты физического свитча по одному, чтобы определить, когда виртуальная машина теряет подключение к сети. Это также исключает неправильные настройки физического порта(-ов).
ВЕСЕННИЕ СКИДКИ
40%
50%
60%
До конца акции: 30 дней 24 : 59 : 59