По вашему запросу ничего не найдено :(
Убедитесь, что запрос написан правильно, или посмотрите другие наши статьи:
img
В сегодняшней статье расскажем про способ настройки IPsec сервера на Mikrotik, который будет особенно актуален для пользователей MacOS и iOS - L2TP Дело в том, что в старших релизах iOS и macOS, компания Apple убрала поддержку PPTP из-за уязвимостей безопасности данного протокола. Поэтому, если раньше вы использовали PPTP для подключения к ресурсам локальной сети, то начиная с версий macOS 10.12 и iOS 10 этого сделать не получится. Настройка Итак, давайте перейдём к настройке. В нашем случае используется роутер RB951Ui-2HnD и RouterOS версии 6.23. Для настройки будем пользоваться утилитой WinBox последней версии. Для начала назначим IP адресацию для VPN сети: Теперь необходимо включить и настроить L2TP сервер, для этого в меню WinBox слева открываем PPP → L2TP Server, включаем сервер, отметив галочкой Enabled, выбираем Use IPsec и задаём пароль: Далее нужно создать пул адресов, который будет назначаться пользователям, которые будут подключаться к нашему серверу. Вы также можете назначить IP адреса вручную, однако, если пользователей будет много, рекомендуется всё же создать пул. Для этого открываем IP → Pool и создаём новый пул. Создадим профиль для пользователей, которые будут подключаться к нашему серверу, в котором укажем ранее созданный пул назначаемых адресов. Для этого открываем PPP → Profile → + и добавляем новый профиль, в котором указываем пул, адреса из которого нужно назначать и DNS серверы: Теперь создадим учётную запись для пользователей, которые будут подключаться к нашему серверу и укажем в ней ранее созданный профиль. Для этого открываем PPP → Secret → + и заполняем следующие поля: Осталось создать IPsec Peer для L2TP и можно подключаться к нашему новому серверу. Для этого открываем IP → IPsec → Peers → + и заполняем поля следующим образом: Поля во вкладках Advanced и Encryption можно оставить по умолчанию.
img
Перед тем как начать: это цикл статей. Мы рекомендуем до этого материала ознакомиться со статьей про Interlayer Discovery. Хотя IPv6 является основной темой этих лекций, в некоторых случаях IPv4 представляет собой полезный пример решения; Address Resolution Protocol IPv4 (ARP) является одним из таких случаев. ARP - это очень простой протокол, используемый для решения проблемы межуровневого обнаружения, не полагаясь на сервер любого типа. Рисунок ниже будет использован для объяснения работы ARP. Предположим, A хочет отправить пакет C. Зная IPv4-адрес C, 203.0.113.12 недостаточно, чтобы A правильно сформировал пакет и поместил его на канал связи по направлению к C. Чтобы правильно построить пакет, A также должен знать: Находится ли C на том же канале связи, что и A MAC или физический адрес C Без этих двух частей информации A не знает, как инкапсулировать пакет в канал связи, поэтому C фактически получит пакет, а B проигнорирует его. Как можно найти эту информацию? На первый вопрос, находится ли C на том же канале вязи, что и A, можно ответить, рассмотрев IP-адрес локального интерфейса, IP-адрес назначения и маску подсети. ARP решает вторую проблему, сопоставляя IP-адрес назначения с MAC-адресом назначения, с помощью следующего процесса: Хост A отправляет широковещательный пакет каждому устройству в сети, содержащему адрес IPv4, но не MAC-адрес. Это запрос ARP; это запрос A на MAC-адрес, соответствующий 203.0.113.12. B и D получают этот пакет, но не отвечают, поскольку ни один из их локальных интерфейсов не имеет адреса 203.0.113.12. Хост C получает этот пакет и отвечает на запрос, снова используя unicast пакет. Этот ответ ARP содержит как IPv4-адрес, так и соответствующий MAC-адрес, предоставляя A информацию, необходимую для создания пакетов в направлении C. Когда A получает этот ответ, он вставляет сопоставление между 203.0.113.12 и MAC-адресом, содержащимся в ответе, в локальном кэше ARP. Эта информация будет храниться до истечения времени ожидания; правила тайм-аута записи кэша ARP различаются в зависимости от реализации и часто могут быть настроены вручную. Продолжительность кэширования записи ARP - это баланс между слишком частым повторением одной и той же информации в сети в случае, когда сопоставление IPv4-адресов с MAC-адресами не меняется очень часто, и отслеживанием любых изменений в расположении устройство в случае, когда конкретный адрес IPv4 может перемещаться между хостами. Когда A получает этот ответ, он вставляет сопоставление между 203.0.113.12 и MAC-адресом, содержащимся в ответе, в локальный кэш ARP. Эта информация будет храниться до тех пор, пока не истечет время ожидания; правила для тайм-аута записи кэша ARP варьируются в зависимости от реализации и часто могут быть настроены вручную. Продолжительность кэширования записи ARP - это баланс между тем, чтобы не повторять одну и ту же информацию слишком часто в сети, в случае, когда сопоставление IPv4-MAC-адресов меняется не очень часто, и идти в ногу с любыми изменениями в местоположении устройства, в случае, когда конкретный IPv4-адрес может перемещаться между хостами. Любое устройство, получающее ответ ARP, может принять пакет и кэшировать содержащуюся в нем информацию. Например, B, получив ответ ARP от C, может вставить сопоставление между 203.0.113.12 и MAC-адресом C в свой кэш ARP. Фактически, это свойство ARP часто используется для ускорения обнаружения устройств, когда они подключены к сети. В спецификации ARP нет ничего, что требовало бы от хоста ожидания запроса ARP для отправки ответа ARP. Когда устройство подключается к сети, оно может просто отправить ответ ARP с правильной информацией о сопоставлении, чтобы ускорить процесс начального подключения к другим узлам на том же проводе; это называется gratuitous ARP. Gratuitous ARP также полезны для Duplicate. Gratuitous ARP также полезны для обнаружения дублирующихся адресов (Duplicate Address Detection - DAD); если хост получает ответ ARP с адресом IPv4, который он использует, он сообщит о дублированном адресе IPv4. Некоторые реализации также будут посылать серию gratuitous ARPs в этом случае, чтобы предотвратить использование адреса или заставить другой хост также сообщить о дублирующемся адресе. Что произойдет, если хост A запросит адрес, используя ARP, который не находится в том же сегменте, например, 198.51.100.101 на рисунке 5? В этой ситуации есть две разные возможности: Если D настроен для ответа как прокси-ARP, он может ответить на запрос ARP с MAC-адресом, подключенным к сегменту. Затем A кэширует этот ответ, отправляя любой трафик, предназначенный для E, на MAC-адрес D, который затем может перенаправить этот трафик на E. Наиболее широко распространенные реализации по умолчанию не включают прокси-ARP. A может отправлять трафик на свой шлюз по умолчанию, который представляет собой локально подключенный маршрутизатор, который должен знать путь к любому пункту назначения в сети. IPv4 ARP - это пример протокола, который отображает interlayer идентификаторы путем включения обоих идентификаторов в один протокол. Обнаружение соседей IPv6 IPv6 заменяет более простой протокол ARP серией сообщений Internet Control Message Protocol (ICMP) v6. Определены пять типов сообщений ICMPv6: Тип 133, запрос маршрутизатора Тип 134, объявление маршрутизатора Тип 135, запрос соседа Тип 136, объявление соседа Тип 137, перенаправление Рисунок ниже используется для объяснения работы IPv6 ND. Чтобы понять работу IPv6 ND, лучше всего проследить за одним хостом, поскольку он подключен к новой сети. Хост A на рисунке ниже используется в качестве примера. A начнет с формирования link local address, как описано ранее. Предположим, A выбирает fe80 :: AAAA в качестве link local address. Теперь A использует этот link local address в качестве адреса источника и отправляет запрос маршрутизатору на link local multicast address (адрес многоадресной рассылки для всех узлов). Это сообщение ICMPv6 типа 133. B и D получают этот запрос маршрутизатора и отвечают объявлением маршрутизатора, которое является сообщением ICMPv6 типа 134. Этот одноадресный пакет передается на локальный адрес канала A, используемый в качестве адреса источника, fe80 :: AAAA. Объявление маршрутизатора содержит информацию о том, как вновь подключенный хост должен определять информацию о своей локальной конфигурации в виде нескольких флагов. Флаг M указывает, что хост должен запросить адрес через DHCPv6, потому что это управляемый канал. Флаг O указывает, что хост может получать информацию, отличную от адреса, который он должен использовать через DHCPv6. Например, DNS-сервер, который хост должен использовать для разрешения имен DNS, должен быть получен с помощью DHCPv6. Если установлен флаг O, а не флаг M, A должен определить свой собственный IPv6-адрес интерфейса. Для этого он определяет набор префиксов IPv6, используемых в этом сегменте, исследуя поле информации о префиксе в объявлении маршрутизатора. Он выбирает один из этих префиксов и формирует IPv6-адрес, используя тот же процесс, который он использовал для формирования link local address: он добавляет локальный MAC-адрес (EUI-48 или EUI-64) к указанному префиксу. Этот процесс называется SLAAC. Теперь хост должен убедиться, что он не выбрал адрес, который использует другой хост в той же сети; он должен выполнять DAD. Чтобы выполнить обнаружение повторяющегося адреса: Хост отправляет серию сообщений запроса соседей, используя только что сформированный IPv6-адрес и запрашивая соответствующий MAC-адрес (физический). Это сообщения ICMPv6 типа 135, передаваемые с link local address, уже назначенного интерфейсу. Если хост получает объявление соседа или запрос соседа с использованием того же адреса IPv6, он предполагает, что локально сформированный адрес является дубликатом; в этом случае он сформирует новый адрес, используя другой локальный MAC-адрес, и попытается снова. Если хост не получает ни ответа, ни запроса соседа другого хоста, использующего тот же адрес, он предполагает, что адрес уникален, и назначает вновь сформированный адрес интерфейсу. Устранение ложных срабатываний при обнаружении повторяющегося адреса Процесс DAD, описанный здесь, может привести к ложным срабатываниям. В частности, если какое-то другое устройство на канале связи передает исходные пакеты запроса соседа обратно к A, оно будет считать, что это от другого хоста, требующего тот же адрес, и, следовательно, объявит дубликат и попытается сформировать новый адрес. Если устройство постоянно повторяет все запросы соседей, отправленные A, A никогда не сможет сформировать адрес с помощью SLAAC. Чтобы решить эту проблему, RFC7527 описывает усовершенствованный процесс DAD. В этом процессе A будет вычислять одноразовый номер, или, скорее, случайно выбранную серию чисел, и включать ее в запрос соседей, используемый для проверки дублирования адреса. Этот одноразовый номер включен через расширения Secure Neighbor Discovery (SEND) для IPv6, описанные в RFC3971. Если A получает запрос соседа с тем же значением nonce, который он использовал для отправки запроса соседа вовремя DAD, он сформирует новый одноразовый номер и попытается снова. Если это произойдет во второй раз, хост будет считать, что пакеты зацикливаются, и проигнорирует любые дальнейшие запросы соседей с собственным одноразовым номером в них. Если полученные запросы соседей имеют одноразовый номер, отличный от того, который выбрал локальный хост, хост будет предполагать, что на самом деле существует другой хост, который выбрал тот же адрес IPv6, и затем сформирует новый адрес IPv6. Как только у него есть адрес для передачи данных, A теперь требуется еще одна часть информации перед отправкой информации другому хосту в том же сегменте - MAC-адрес принимающего хоста. Если A, например, хочет отправить пакет в C, он начнет с отправки multicast сообщения запроса соседа на C с запросом его MAC-адреса; это сообщение ICMPv6 типа 135. Когда C получает это сообщение, он ответит с правильным MAC-адресом для отправки трафика для запрошенного IPv6-адреса; это сообщение ICMPv6 типа 136. В то время как предыдущий процесс описывает объявления маршрутизатора, отправляемые в ответ на запрос маршрутизатора, каждый маршрутизатор будет периодически отправлять объявления маршрутизатора на каждом подключенном интерфейсе. Объявление маршрутизатора содержит поле lifetime, указывающее, как долго действует объявление маршрутизатора. А теперь почитайте о проблемах шлюза по умолчанию. У нас получился отличным материал на эту тему.
img
Говоря простым языком, 3CX IP PBX (Phone System) это телефонная станция для корпоративных клиентов, для бизнеса. Многие компании привыкли к традиционным офисным мини – АТС, которые работают на собственной аппаратной платформе и приобретаются как единое устройство. 3CX - это в первую очередь программное обеспечение, которое может быть установлено на компьютер или сервер на базе операционной системы Windows. От слов к делу, перейдем непосредственно к АТС. В данной статье будет описана облачная АТC 3CX Phone System. Главный интерфейс После установки 3CX, первая и самая главная консоль администратора АТС – это интерфейс на скриншоте ниже. Этот интерфейс позволяет производить настройку телефонной станции 3CX Phone System, совершать перезагрузку и прочие административные функции. Навигационная панель Навигационная панель помогает администратору быстро найти необходимый сегмент настройки. Данная панель позволяет быстро перемещаться между объектами навигации и редактировать их в главном поле интерфейса. Разберем основные элементы навигационной панели АТС 3CX Phone System: Статус Портов/Транков: Проверка работы PSTN линий или VoIP транков Статус абонентов: Просмотр статуса каждого из номеров в АТС Статус системных номеров: Состояние системных номеров АТС 3CX Клиенты 3CX Phone: Зарегистрированные в системе клиенты Удаленные подключения: Список удаленных клиентов АТС со статусом регистрации События 3CX: Возможность просмотра журнала IP – АТС 3CX и текущих ошибок в режиме реального времени Событий Windows: Данный пункт отвечает на вопрос «Что происходит с сервером 3CX?» Статус сервисов: Список запущенных сервисов 3CX и их статусы (в рамках Windows) Телефоны: Просмотр и управление аппаратными телефонами Внутренние номера: Просмотр, добавление и редактирование внутренних номеров SIP Trunks: Просмотр, управление и добавление SIP транков от провайдера телефонии PSTN шлюзы: Менеджмент устройств для стыка с телефонной сетью общего пользования (PSTN) Входящие правила: Настройка правил обработки входящего вызова Исходящие правила: Настройка поведения исходящего звонка (куда маршрутизировать, как и так далее) Автосекретарь: «Здравствуйте! Вы позвонили в компанию…» Группы вызова: Настройка нескольких внутренних номеров, которые будут звонить одновременно при определенных обстоятельствах Очереди вызова: Реализация алгоритма очередей вызовов Настройки: В данном меню можно произвести настройки музыки на удержании, глобального расписания работы сервера и прочих «общих» настроек Обновления: Проверка доступных обновлений программного обеспечения Помощь: Ссылка на FAQ, форум, блог и прочие ресурсы компании 3CX, где желающий может найти ответы на свои вопросы по работе с АТС Автосекретарь 3CX PBX 3CX Phone это SIP софтфон, который позволяет использовать компьютер вместе с гарнитурой в роли полноценной замены аппаратному телефону на столе. Перечислим некоторые из ключевых возможностей софтфона: Совершение и прием звонков Обработка нескольких одновременных вызовов Возможность повесить вызов на «холд» Совершать трансфер вызова Просмотр входящих вызовов Поддержка TAPI (Telephony Application Programming Interface) для интеграции с Microsoft Outlook (лицензируется дополнительно) Кнопка записи разговоров сохраняет аудио файл разговора на локальный компьютер
ВЕСЕННИЕ СКИДКИ
40%
50%
60%
До конца акции: 30 дней 24 : 59 : 59