По вашему запросу ничего не найдено :(
Убедитесь, что запрос написан правильно, или посмотрите другие наши статьи:
img
Друг, в статье быстро покажем, как заставить звонить IP – телефон Grandstream GXP1610 в связке с IP – АТС Asterisk. Настройки выполним с помощью графической оболочки FreePBX 14. Let's get it started! $dbName_ecom = "to-www_ecom"; $GoodID = "2524508967"; mysql_connect($hostname,$username,$password) OR DIE("Не могу создать соединение "); mysql_select_db($dbName_ecom) or die(mysql_error()); $query_ecom = "SELECT `model`, `itemimage1`, `price`, `discount`, `url`, `preview115`, `vendor`, `vendorCode` FROM `items` WHERE itemid = '$GoodID';"; $res_ecom=mysql_query($query_ecom) or die(mysql_error()); $row_ecom = mysql_fetch_array($res_ecom); echo 'Кстати, купить '.$row_ecom['vendor'].' '.$row_ecom['vendorCode'].' можно в нашем магазине Merion Shop по ссылке ниже. С настройкой поможем 🔧 Купить '.$row_ecom['model'].''.number_format(intval($row_ecom['price']) * (1 - (intval($row_ecom['discount'])) / 100), 0, ',', ' ').' ₽'; $dbName_ecom = "to-www_02"; $GoodID = "2524508967"; mysql_connect($hostname,$username,$password) OR DIE("Не могу создать соединение "); mysql_select_db($dbName_ecom) or die(mysql_error()); Пошаговое видео Настройка FreePBX Открыв FreePBX переходим в меню Applications → Extensions, нажимаем + Add Extension и создаем сущность вида Chan_Sip. Внутри страницы настройки: User Extension - желаемый номер для аппарата; Display Name - имя, которое увидим на дисплее телефонного аппарата; Обратите внимание, по умолчанию, chan_sip слушает пор 5160! Из поля Secret скопируйте пароль, который FreePBX сгенерировал для нового номера. Сохраняем настройки. Настройка GXP1610 Следующее, что нам предстоит сделать – выяснить IP – адрес (если он получил его по протоколу DHCP), который наш подключенный в сеть GXP1610 получил. Все очень просто – на дисплее телефона нажмите на кнопку NextScr - вот и наш IP – адрес. Открываем новую вкладку в браузере и попадаем на страницу графической оболочки (web gui) нашего Grandstream GXP1610. Вводим логин и пароль. По умолчанию, логин для входа - admin, пароль такой же - admin SIP – регистрации на телефоне нет – исправляем. Открываем Accounts → General Settings и начинаем заполнять поля: Account Name - имя учетной записи. Например, Мерион Нетворкс; SIP Server - IP – адрес сервера Asterisk и через двоеточие порт, на котором слушает chan_sip. Например, 192.168.2.19:5160; Outbound Proxy - аналогично сип – серверу, IP – адрес сервера Asterisk и через двоеточие порт; SIP User ID - номер телефона, который создали на FreePBX. Например, 155; Authenticate ID - аналогично как выше, внутренний номер. Например, 155; Authenticate Password - пароль, который вы скопировали из поля Secret на этапе настройки FreePBX; Name - указываем тоже самое, что и в поле Account Name; Account Display - рекомендуем выбрать User ID, чтобы на дисплее телефона отображался номер, а не имя. Все-таки, дисплей не очень большой :); Нажимаем Save and Apply Проверка В меню навигации в WEB – интерфейсе управления телефоном нажмите на Status. Если в опции SIP registration на зеленом фоне указано Yes, то телефон успешно зарегистрирован. Не получилось? Напиши свой вопрос в комментариях – поможем :)
img
Перед тем как начать: это цикл статей. Мы рекомендуем до этого материала ознакомиться со статьей про Interlayer Discovery. Хотя IPv6 является основной темой этих лекций, в некоторых случаях IPv4 представляет собой полезный пример решения; Address Resolution Protocol IPv4 (ARP) является одним из таких случаев. ARP - это очень простой протокол, используемый для решения проблемы межуровневого обнаружения, не полагаясь на сервер любого типа. Рисунок ниже будет использован для объяснения работы ARP. Предположим, A хочет отправить пакет C. Зная IPv4-адрес C, 203.0.113.12 недостаточно, чтобы A правильно сформировал пакет и поместил его на канал связи по направлению к C. Чтобы правильно построить пакет, A также должен знать: Находится ли C на том же канале связи, что и A MAC или физический адрес C Без этих двух частей информации A не знает, как инкапсулировать пакет в канал связи, поэтому C фактически получит пакет, а B проигнорирует его. Как можно найти эту информацию? На первый вопрос, находится ли C на том же канале вязи, что и A, можно ответить, рассмотрев IP-адрес локального интерфейса, IP-адрес назначения и маску подсети. ARP решает вторую проблему, сопоставляя IP-адрес назначения с MAC-адресом назначения, с помощью следующего процесса: Хост A отправляет широковещательный пакет каждому устройству в сети, содержащему адрес IPv4, но не MAC-адрес. Это запрос ARP; это запрос A на MAC-адрес, соответствующий 203.0.113.12. B и D получают этот пакет, но не отвечают, поскольку ни один из их локальных интерфейсов не имеет адреса 203.0.113.12. Хост C получает этот пакет и отвечает на запрос, снова используя unicast пакет. Этот ответ ARP содержит как IPv4-адрес, так и соответствующий MAC-адрес, предоставляя A информацию, необходимую для создания пакетов в направлении C. Когда A получает этот ответ, он вставляет сопоставление между 203.0.113.12 и MAC-адресом, содержащимся в ответе, в локальном кэше ARP. Эта информация будет храниться до истечения времени ожидания; правила тайм-аута записи кэша ARP различаются в зависимости от реализации и часто могут быть настроены вручную. Продолжительность кэширования записи ARP - это баланс между слишком частым повторением одной и той же информации в сети в случае, когда сопоставление IPv4-адресов с MAC-адресами не меняется очень часто, и отслеживанием любых изменений в расположении устройство в случае, когда конкретный адрес IPv4 может перемещаться между хостами. Когда A получает этот ответ, он вставляет сопоставление между 203.0.113.12 и MAC-адресом, содержащимся в ответе, в локальный кэш ARP. Эта информация будет храниться до тех пор, пока не истечет время ожидания; правила для тайм-аута записи кэша ARP варьируются в зависимости от реализации и часто могут быть настроены вручную. Продолжительность кэширования записи ARP - это баланс между тем, чтобы не повторять одну и ту же информацию слишком часто в сети, в случае, когда сопоставление IPv4-MAC-адресов меняется не очень часто, и идти в ногу с любыми изменениями в местоположении устройства, в случае, когда конкретный IPv4-адрес может перемещаться между хостами. Любое устройство, получающее ответ ARP, может принять пакет и кэшировать содержащуюся в нем информацию. Например, B, получив ответ ARP от C, может вставить сопоставление между 203.0.113.12 и MAC-адресом C в свой кэш ARP. Фактически, это свойство ARP часто используется для ускорения обнаружения устройств, когда они подключены к сети. В спецификации ARP нет ничего, что требовало бы от хоста ожидания запроса ARP для отправки ответа ARP. Когда устройство подключается к сети, оно может просто отправить ответ ARP с правильной информацией о сопоставлении, чтобы ускорить процесс начального подключения к другим узлам на том же проводе; это называется gratuitous ARP. Gratuitous ARP также полезны для Duplicate. Gratuitous ARP также полезны для обнаружения дублирующихся адресов (Duplicate Address Detection - DAD); если хост получает ответ ARP с адресом IPv4, который он использует, он сообщит о дублированном адресе IPv4. Некоторые реализации также будут посылать серию gratuitous ARPs в этом случае, чтобы предотвратить использование адреса или заставить другой хост также сообщить о дублирующемся адресе. Что произойдет, если хост A запросит адрес, используя ARP, который не находится в том же сегменте, например, 198.51.100.101 на рисунке 5? В этой ситуации есть две разные возможности: Если D настроен для ответа как прокси-ARP, он может ответить на запрос ARP с MAC-адресом, подключенным к сегменту. Затем A кэширует этот ответ, отправляя любой трафик, предназначенный для E, на MAC-адрес D, который затем может перенаправить этот трафик на E. Наиболее широко распространенные реализации по умолчанию не включают прокси-ARP. A может отправлять трафик на свой шлюз по умолчанию, который представляет собой локально подключенный маршрутизатор, который должен знать путь к любому пункту назначения в сети. IPv4 ARP - это пример протокола, который отображает interlayer идентификаторы путем включения обоих идентификаторов в один протокол. Обнаружение соседей IPv6 IPv6 заменяет более простой протокол ARP серией сообщений Internet Control Message Protocol (ICMP) v6. Определены пять типов сообщений ICMPv6: Тип 133, запрос маршрутизатора Тип 134, объявление маршрутизатора Тип 135, запрос соседа Тип 136, объявление соседа Тип 137, перенаправление Рисунок ниже используется для объяснения работы IPv6 ND. Чтобы понять работу IPv6 ND, лучше всего проследить за одним хостом, поскольку он подключен к новой сети. Хост A на рисунке ниже используется в качестве примера. A начнет с формирования link local address, как описано ранее. Предположим, A выбирает fe80 :: AAAA в качестве link local address. Теперь A использует этот link local address в качестве адреса источника и отправляет запрос маршрутизатору на link local multicast address (адрес многоадресной рассылки для всех узлов). Это сообщение ICMPv6 типа 133. B и D получают этот запрос маршрутизатора и отвечают объявлением маршрутизатора, которое является сообщением ICMPv6 типа 134. Этот одноадресный пакет передается на локальный адрес канала A, используемый в качестве адреса источника, fe80 :: AAAA. Объявление маршрутизатора содержит информацию о том, как вновь подключенный хост должен определять информацию о своей локальной конфигурации в виде нескольких флагов. Флаг M указывает, что хост должен запросить адрес через DHCPv6, потому что это управляемый канал. Флаг O указывает, что хост может получать информацию, отличную от адреса, который он должен использовать через DHCPv6. Например, DNS-сервер, который хост должен использовать для разрешения имен DNS, должен быть получен с помощью DHCPv6. Если установлен флаг O, а не флаг M, A должен определить свой собственный IPv6-адрес интерфейса. Для этого он определяет набор префиксов IPv6, используемых в этом сегменте, исследуя поле информации о префиксе в объявлении маршрутизатора. Он выбирает один из этих префиксов и формирует IPv6-адрес, используя тот же процесс, который он использовал для формирования link local address: он добавляет локальный MAC-адрес (EUI-48 или EUI-64) к указанному префиксу. Этот процесс называется SLAAC. Теперь хост должен убедиться, что он не выбрал адрес, который использует другой хост в той же сети; он должен выполнять DAD. Чтобы выполнить обнаружение повторяющегося адреса: Хост отправляет серию сообщений запроса соседей, используя только что сформированный IPv6-адрес и запрашивая соответствующий MAC-адрес (физический). Это сообщения ICMPv6 типа 135, передаваемые с link local address, уже назначенного интерфейсу. Если хост получает объявление соседа или запрос соседа с использованием того же адреса IPv6, он предполагает, что локально сформированный адрес является дубликатом; в этом случае он сформирует новый адрес, используя другой локальный MAC-адрес, и попытается снова. Если хост не получает ни ответа, ни запроса соседа другого хоста, использующего тот же адрес, он предполагает, что адрес уникален, и назначает вновь сформированный адрес интерфейсу. Устранение ложных срабатываний при обнаружении повторяющегося адреса Процесс DAD, описанный здесь, может привести к ложным срабатываниям. В частности, если какое-то другое устройство на канале связи передает исходные пакеты запроса соседа обратно к A, оно будет считать, что это от другого хоста, требующего тот же адрес, и, следовательно, объявит дубликат и попытается сформировать новый адрес. Если устройство постоянно повторяет все запросы соседей, отправленные A, A никогда не сможет сформировать адрес с помощью SLAAC. Чтобы решить эту проблему, RFC7527 описывает усовершенствованный процесс DAD. В этом процессе A будет вычислять одноразовый номер, или, скорее, случайно выбранную серию чисел, и включать ее в запрос соседей, используемый для проверки дублирования адреса. Этот одноразовый номер включен через расширения Secure Neighbor Discovery (SEND) для IPv6, описанные в RFC3971. Если A получает запрос соседа с тем же значением nonce, который он использовал для отправки запроса соседа вовремя DAD, он сформирует новый одноразовый номер и попытается снова. Если это произойдет во второй раз, хост будет считать, что пакеты зацикливаются, и проигнорирует любые дальнейшие запросы соседей с собственным одноразовым номером в них. Если полученные запросы соседей имеют одноразовый номер, отличный от того, который выбрал локальный хост, хост будет предполагать, что на самом деле существует другой хост, который выбрал тот же адрес IPv6, и затем сформирует новый адрес IPv6. Как только у него есть адрес для передачи данных, A теперь требуется еще одна часть информации перед отправкой информации другому хосту в том же сегменте - MAC-адрес принимающего хоста. Если A, например, хочет отправить пакет в C, он начнет с отправки multicast сообщения запроса соседа на C с запросом его MAC-адреса; это сообщение ICMPv6 типа 135. Когда C получает это сообщение, он ответит с правильным MAC-адресом для отправки трафика для запрошенного IPv6-адреса; это сообщение ICMPv6 типа 136. В то время как предыдущий процесс описывает объявления маршрутизатора, отправляемые в ответ на запрос маршрутизатора, каждый маршрутизатор будет периодически отправлять объявления маршрутизатора на каждом подключенном интерфейсе. Объявление маршрутизатора содержит поле lifetime, указывающее, как долго действует объявление маршрутизатора. А теперь почитайте о проблемах шлюза по умолчанию. У нас получился отличным материал на эту тему.
img
Файловые системы и UUID имеют особую взаимосвязь в системах Linux. Что это за очень длинные идентификаторы и как проследить связи между ними и разделами диска? Файл /etc/fstab - очень важный файл в системах Linux. Он содержит информацию, которая позволяет системе подключаться к разделам диска и определять, где они должны быть смонтированы в файловой системе. Хотя этот файл играл важную роль на протяжении многих лет, его формат изменился с введением UUID и, в некоторых системах, более надежного типа файловой системы. Вот пример файла /etc/fstab в системе Fedora: Каждая строка в файле (кроме комментариев) представляет файловую систему и имеет шесть полей. Описывает раздел диска Определяет точку монтирования Показывает тип файловой системы Предоставляет варианты монтирования Определяет, может ли файловая система быть выгружена (0 = нет) с помощью команды dump (не часто) Определяет, должна ли проверка файловой системы выполняться во время загрузки (0 = нет) Файловая система btrfs - это современная файловая система с копированием при записи (copy-on-write- CoW) для Linux, которая предоставляет расширенные функции, а также уделяет особое внимание отказоустойчивости, восстановлению и простому администрированию. Файл /etc/fstab, показанный выше, необычен тем, что новая ОС была только недавно установлена на /dev/sda, а папка /home из системы перед обновлением (на отдельном диске) была затем перемонтирована после того, как первая ссылка на /home была закомментирована. Что такое UUID? Те длинные идентификаторы устройств, которые вы видите в файле /etc/fstab и которые помечены UUID (универсальный уникальный идентификатор), имеют длину 128 бит (32 шестнадцатеричных символа) и расположены в последовательности символов 8-4-4-4-12. Один из способов увидеть, как UUID соединяются с именами устройств (например, /dev/sda1), - это использовать команду blkid. Вы также можете проверить файл by-uuid, чтобы просмотреть взаимосвязь: Устройство 76E8-CACF, смонтированное как /dev/sdc1, - это временно используемый USB-накопитель. Вы можете получить представление о том, как Linux генерирует UUID, выполнив команду uuidgen. Проверьте, есть ли он в вашей системе, набрав команду which uuidgen. Эти идентификаторы для всех практических целей уникальны. Когда вы введете команду uuidgen, вы получите любой из более чем 3.40 ? 1038 возможных ответов. Использование lsblk Еще один удобный способ просмотра файловых систем - это команда lsblk, которая дает четкое представление о том, как файловые системы связаны, а также о точках монтирования, размерах устройств и основных/второстепенных номерах устройств. Эта команда упрощает визуализацию разделов на каждом диске.
ВЕСЕННИЕ СКИДКИ
40%
50%
60%
До конца акции: 30 дней 24 : 59 : 59