По вашему запросу ничего не найдено :(
Убедитесь, что запрос написан правильно, или посмотрите другие наши статьи:
img
В этой статье мы рассмотрим настройку BGP-оповещения для Network Layer Reachability Information (NLRI), а также конфигурацию политики маршрутизации BGP. Предыдущие статьи цикла про BGP: Основы протокола BGP Построение маршрута протоколом BGP Формирование соседства в BGP Видео: Основы BGP за 7 минут Оповещения NLRI Прежде чем мы начнем настраивать оповещения NLRI, используя различные команды, давайте сначала обсудим старую функцию BGP, которую Cisco отключает по умолчанию. Эта функция называется синхронизацией BGP. Для проверки того, что Cisco отключила эту функцию на вашем устройстве, выполните команду show running-configuration на одном из устройств BGP, и в выводимой информации, под пунктом «процессы» BGP, вы увидите сообщение no synchronization. Если эта функция включена, функция синхронизации не позволяет спикеру BGP вводить префиксы в BGP, если нет коррелированной записи для префикса в базовом IGP (или статических маршрутах). Это помогает предотвратить ситуации типа "черная дыра" (black hole), когда устройства на маршруте не работают с BGP и не могут переадресовать префикс BGP, потому что у них нет маршрута к этому префиксу из их IGP. Эта функция отключена по умолчанию из-за создания множества различных механизмов масштабируемости, существующих в BGP, которые позволяют настроить топологию iBGP без требования полной сетки одноранговых узлов iBGP. Еще одна причина, по которой он отключен, заключается в том, что он поощряет перераспределение префиксов BGP в базовый IGP, и это не безопасно. Существует причина, по которой Cisco уходит от использования команды network для настройки IGPs в CLI. Не очень хорошая идея в программировании, чтобы одна команда выполняла очень разные вещи, и когда она используется в разных областях. Это относится и к команде network. При использовании в IGP команда включает протокол на интерфейсе (а также влияете на то, какие префиксы объявляются), но в BGP у команды network другое назначение. Она не включает BGP на определенных интерфейсах, вместо этого она объявляет префикс, который существует (каким-то образом) на локальном устройстве, и вводит его в BGP. Хотя префикс, который вы могли бы объявить в BGP, чаще всего встречается в вашем IGPs в таблице маршрутизации. Вы можете использовать другие методы для создания префикса для оповещения. Например, вы можете создать интерфейс обратной связи, который обладает префиксом сети, который вы хотите объявить. Или вы можете создать статический маршрут или даже статический маршрут, указывающий на Null0. Одна маленькая хитрость, связанная с командой network в BGP, заключается в том, что, если ваша маска подсети для вашего префикса не находится на классовой границе IP- адреса (например, 10.0.0.0/8), то вам нужно не забыть использовать ключевое слово mask и указать правильную маску при использовании команды. Пример 1 показывает создание двух петлевых интерфейсов и объявление их префиксов в BGP. Обратите внимание, что этот пример также показывает проверку этих префиксных объявлений на маршрутизаторе ATL. Пример 1: Использование команды Network в BGP TPA1#conf t Enter configuration commands, one per line. End with CNTL/Z. TPA1(config)#interface loopback 192 TPA1(config-if)#ip address 192.168.1.1 255.255.255.0 TPA1(config-if)#exit TPA1(config)#interface loopback 172 TPA1(config-if)#ip address 172.16.10.1 255.255.255.0 TPA1(config-if)#exit TPA1(config)router bgp 100 TPA1(config-router)#network 192.168.1.0 TPA1(config-router)#network 172.16.10.0 mask 255.255.255.0 TPA1(config-router)#end TPA1# ATL# ATL#show ip bgp Хотя команда network проста и удобна, она не была бы эффективной, если бы у вас было много префиксов для оповещения. Другой вариант- перераспределить префиксы в BGP из IGP или статических маршрутов. Пример 2 демонстрирует перераспределение префиксов, которые были получены через EIGRP, в BGP. Обратите внимание при проверке, что исходный код для этих префиксов отображается как (?) указывает на неизвестность. Пример 2: перераспределение префиксов в BGP TPA1#configure terminal Enter configuration commands, one per line. End with CNTL/Z. TPA1(config)router bgp 100 TPA1(config-router)#redistribute eigrp 100 TPA1(config-router)#end TPA1# ATL#show ip bgp Когда вы начинаете объявлять (оповещать) NLRI в BGP, вы можете столкнуться с префиксами в вашей таблице BGP (показанной с show ip bgp), которые имеют код состояния (r) вместо ожидаемого допустимого кода состояния (*). Код состояния (r) указывает на сбой RIB, означающий, что BGP попытался поместить префикс в таблицу BGP, но не смог из- за какой-то проблемы. Наиболее распространенной причиной отказа RIB является административное расстояние (AD). Например, IBGP узнал префиксы несущие ужасные объявления AD из 200. Это означает, что если ваш маршрутизатор получил префикс через IGP (даже такой плохой, как RIP с AD 120), то он будет предпочтительнее префикса IBGP. В результате протокол BGP получивший это объявление AD, не отметит префикс как действующий. Обратите внимание, что это, как правило, не происходит с префиксами EBGP-learned, поскольку они имеют очень предпочтительное объявление 20 (по умолчанию). Очень часто, если желательно иметь префикс в IGP и BGP, администраторы будут манипулировать значениями AD на своих маршрутизаторах, чтобы улучшить AD IBGP. Например, в случае RIP и BGP администратор мог бы установить AD изученных маршрутов IBGP на 119, чтобы сделать их предпочтительными по сравнению с используемым IGP. В дополнение к выявлению сбоев RIB в результатах команды show ip bgp, вы можете использовать более прямую команду show ip bgp rib-failure, чтобы увидеть любые префиксы в этом состоянии. Это особенно полезно в случае массивных таблиц BGP. Настройка политики маршрутизации BGP Довольно часто встречаются топологии, в которых вы явно не хотите объявлять префиксы в своей таблице BGP, или вы не хотите получать определенные префиксы от узла BGP. К счастью, в вашем распоряжении есть много инструментов для этого. Например, вот только некоторые методы, которые вы могли бы использовать для фильтрации префиксов: Distribute lists Extended ACLs Prefix lists AS Path filters Route maps Пример 3 демонстрирует один из методов фильтрации. Выбран подход route map, потому что все (и это правильно) любят карты маршрутов. Пример 3: Использование route map в качестве префиксного фильтра в BGP ATL# configure terminal Enter configuration commands, one per line. End with CNTL/Z. ATL(config)#ip access-list standard MYPREFIX ATL(config-std-nacl)#permit 192.168.1.0 0.0.0.255 ATL(config-std-nacl)#exit ATL(config)#route-map MYMAP deny 10 ATL(config-route-map)#match ip address MYPREFIX ATL(config-route-map)#exit ATL(config)#route-map MYMAP permit 20 ATL(config-route-map)#exit ATL(config)#router bqp 200 ATL(config-router)#neighbor 10.10.10.1 route-map MYMAP in ATL(config-router)#end ATL# ATL# clear ip bqp * soft ATL# show ip bqp Обратите внимание, перед проверкой я запускаю команду clear ip bgp * soft. Это гарантирует, что устройство сразу же обновит информацию BGP для меня, так что мне не придется ждать истечения таймера, когда дело дойдет до конвергенции BGP на новых манипуляциях с политикой, которые мы сделали. Помните, что BGP использует множество различных атрибутов пути вместо простой метрики, чтобы предоставить вам возможность легко настроить способ, по которому происходит маршрутизация. Ниже приведены некоторые из атрибутов пути, которыми вы могли бы манипулировать, чтобы настроить политику: Weight MED Local Preference AS Path Можно спросить себя, как AS Path могут быть использованы в целях маршрутизации. Поскольку манипуляция AS Path часто выполняется с помощью AS Path Prepending. Вы отравляете префикс, добавляя свой собственный номер AS к пути, чтобы сделать более длинным (менее предпочтительным) AS Path. Как и большинство наших манипуляций с атрибутом пути, это легко сделать с помощью карты маршрута. Давайте рассмотрим пример использования Local Preference для манипулирования политикой. Мы часто используем Local Preference, чтобы повлиять на то, как мы будем направлять исходящий трафик к префиксу BGP. Мы делаем это, устанавливая значения Local Preference, входящие по нескольким путям. Прежде чем мы начнем, поймите, что Local Preference - это значение, которое рассматривается довольно высоко в процессе принятия решения о наилучшем пути BGP, более высокое значение предпочтительно, и значения передаются только в обновлениях IBGP. Именно так имя LOCAL вошло в название Local Preference. Для начала я объявил тот же префикс в AS 200 (ATL и ATL2) от маршрутизаторов TPA1 и TPA2 AS 100. Глядя на пример 4, Вы можете видеть, что этот префикс (192.168.1.0) может быть достигнут с помощью следующего прыжка 10.10.10.1 и что это предпочтительный путь. Альтернативный путь, который будет использоваться в случае неудачи этого пути, будет проходить через следующий переход 10.21.21.1. Пример 4: Подготовка к использованию Local Preference ATL# show ip bqp Теперь пришло время поэкспериментировать и изменить данное поведение с помощью примера манипуляции атрибутом пути. Мой подход будет состоять в том, чтобы определить префикс, которым мы хотим манипулировать (192.168.1.0), и поднять значение локального предпочтения, чтобы оно было больше, чем значение по умолчанию 100 для пути к TPA2 на следующем прыжке 10.21.21.1. Я делаю это, манипулируя префиксом, когда он входит через путь 10.21.21.1 . Пример 5 показывает эту конфигурацию. ATL# configure terminal Enter configuration commands, one per line. End with CNTL/Z. ATL(config)#ip access-list standard OURPREFIX ATL(config-std-nacl)#permit 192.168.1.0 0.0.0.255 ATL(config-std-nacl)#exit ATL(config)#route-map SETLOCALPREF permit 10 ATL(config-route-map)#match ip address OURPREFIX ATL(config-route-map)#set local-preference 110 ATL(config-route-map)#exit ATL(config)#route-map SETLOCALPREF permit 20 ATL(config-route-map)#exit ATL(config)#router bqp 200 ATL(config-router)#neighbor 10.21.21.1 route-map SETLOCALPREF in ATL(config-router)#end ATL# ATL# clear ip bqp * soft ATL# show ip bqp Обратите внимание, что предпочтительный путь теперь проходит через следующий переход 10.21.21.1, как мы и хотели. Для этого префикса также отображается значение Local Preference - 110. Это более высокое значение является предпочтительным и изменяет выбор, сделанный процессом выбора наилучшего пути BGP.
img
Near-field communications и Bluetooth LE - это маломощные беспроводные технологии, подходящие для различных применений на предприятиях. Среди множества вариантов маломощной связи с относительно малым радиусом действия выделяются две технологии - Near-Field Communication и Bluetooth Low Energy. Оба имеют относительно низкие затраты на развертывание и просты в использовании. NFC наиболее известна тем, что является технологией, лежащей в основе многих современных смарт-карт. Чипы NFC должны быть очень близко, в пределах нескольких сантиметров, к считывающему устройству для подключения, но это положительный момент в случае использования, который является безопасностью и контролем доступа. Bluetooth LE-это маломощная производная от основного стандарта Bluetooth, компенсирующая более низкую потенциальную пропускную способность с существенно сниженным энергопотреблением и, как следствие, способностью вписываться в более широкий спектр потенциальных вариантов использования. Давайте более подробно рассмотрим каждую технологию и их основные варианты использования. Особенности NFC NFC работает на близкоконтактных диапазонах-устройства должны находиться в пределах нескольких сантиметров друг от друга, чтобы установить контакт. Считываемая пассивная NFC – «tag» (метка) вообще не требует независимого источника питания, черпая энергию из сигнала инициатора, который работает на частоте около 13,5 МГц и требует от 100 до 700 мкА мощности при активном считывании метка. Короткий радиус действия на самом деле является преимуществом. Самое важное в NFC заключается в том, что это не просто радиосигнал, в него встроен мощный протокол безопасности. То есть потенциальный злоумышленник должен быть очень близко - в пределах нескольких метров, используя специальное оборудование, чтобы просто иметь возможность обнаружить имеющееся соединение NFC. Реализации NFC также могут использовать технологию SSL для дополнительной безопасности. Это неудивительно, учитывая происхождение NFC как бесконтактной платежной технологии. Это создаёт привлекательность для розничных торговцев, которые могут использовать NFC, чтобы позволить клиентам получить дополнительную информацию о товарах перед покупкой, получить купоны или попросить помощи у продавца, просто прикоснувшись своими телефонами к точке доступа NFC. Несмотря на то, что ограниченный радиус действия ограничивает количество вариантов использования, технологии NFC, речь идет не только об открытии дверей и покупке товара. NFC может использоваться для начальной загрузки соединений для более быстрого и легкого сопряжения между устройствами, поэтому пользователь может просто коснуться своим телефоном на правильно оборудованном проекторе в конференц-зале, чтобы создать соединение NFC и подтвердить, что смартфон является одобренным устройством для подключения, и провести презентацию. Сама презентация или видеоданные не будут передаваться через NFC, но рукопожатие NFC действует как проверка для другого беспроводного протокола, устраняя необходимость входа, например, в сеть Wi-Fi или любую другую сеть с более высокой пропускной способностью сеть, которая может передавать эти данные. Характеристики Bluetooth LE Bluetooth LE, напротив, работает на значительно больших расстояниях - где-то до нескольких десятков метров - и имеет примерно вдвое большую максимальную пропускную способность соединения NFC на скорости 1 Мбит/с. Это продукт хорошо известной технологии Bluetooth, оптимизированный для межмашинного взаимодействия, благодаря более низкому энергопотреблению, чем стандарт магистральной линии. Он потребляет менее 15 мА на обоих концах соединения и имеет практическую дальность действия около 10 метров, обеспечивая безопасность соединений с помощью шифрования AES. Тем не менее, Bluetooth LE не сможет заменить NFC. С точки зрения передачи информации, NFC намного быстрее, чем BLE. BLE обычно занимает значительную долю секунды или больше, чтобы идентифицировать и защитить соединение, в то время у NFC этот процесс занимает мгновение. Однако Bluetooth LE значительно более универсален, чем NFC, благодаря большему радиусу действия. Многие специалисты считают, что Bluetooth LE немного лучше подходит для организаций. Примеры использования, такие как отслеживание активов, внутренняя навигация и целевая реклама, - это только верхушка айсберга. Если перед предприятием стоит выбор, какую одну из дух рассмотренных технологий выбрать, то результат довольно очевиден. NFC в основном будет использоваться там, где требуется минимальное расстояние взаимодействия передающих устройств (например, по мерам безопасности или конфиденциальности), недорогая технология с мгновенным подключение и невысокой скоростью. Bluetooth LE будет использоваться в организациях, которым важно расстояние и высокие скорости передачи данных.
img
Введение Однажды в организации, где я работаю, случился Asterisk Случился не без моего участия, а если быть точным, то я и был главным виновником, и как следствие - главным исполнителем. Напасть была локальной, но достаточно быстро получила широкое распространение, хотя, в отдельных уголках приходилось нести прогресс в массы с применением тяжелой артиллерии и напалма. В итоге Asterisk`ом было охвачено порядка полутора тысяч абонентов. Процесс настройки абонента изначально выглядел следующим образом: Включил телефон, обновил прошивку. Пока он перезагружается, завел абонента на Asterisk (создал запись для регистрации SIP-клиента). Далее, самый очевидный способ настройки телефона - web-интерфейс; набрал в адресной строке браузера IP-адрес телефона, авторизовался, настроил два десятка параметров и готово. На всё ушло 2-3 минуты. Следующий абонент - повторяем. На втором десятке абонентов начало надоедать, появилось желание как-нибудь упростить процесс. Заглянул в настройки: экспорт и импорт конфигурации присутствует; сохранил конфигурацию телефона в файл, заглянул в него - обычный текстовый файл, в котором перечислены параметры с их значениями. Нашел параметры, значения которых менял в web-интерфейсе, причем большинство из этих параметров, хоть и отличается от дефолтных, но одинаково для всех настраиваемых в рамках данной организации телефонов. Таким образом, имея эталонный файл конфигурации и редактируя в нем всего 5-6 строк, я получал конфигурации для остальных телефонов, которые "заливал" в аппараты всё через тот же web-интерфейс. Спустя какое-то время количество абонентов заметно выросло, компания продолжала развиваться, сотрудники мигрировали между подразделениями, увольнялись, появлялись новые, некоторые телефоны выходили из строя, и возня с файлами стала постепенно отнимать много времени и раздражала с каждым днем всё больше. Тут я вспомнил про пункт меню из web-интерфейса, в котором были написаны многообещающие слова "Auto Provision". Обратимся за определением к производителям телефонов. У Dlink или Fanvil мы получим следующее: Auto Provisioning используется для реализации удаленной/автоматической инсталляции, развертывания конфигурационных и некоторых других связанных файлов. Snom дает нам практически такое же: Auto Provisioning может использоваться для предоставления общих и специфических параметров конфигурации на телефоны и для актуализации прошивки. Вроде бы всё устраивает, значит, будем для наших целей отталкиваться от этих определений. Вариантов автоматической настройки предусмотрено несколько, и без долгих терзаний, как наиболее понятный и доступный был выбран следующий: Развертывание конфигурации с tftp сервера, адрес которого телефон будет получать по DHCP в Option 66. Разберемся вкратце, что есть что. TFTP - простой протокол передачи файлов (Trivial File Transfer Protocol). В отличие от FTP основан на транспортном протоколе UDP и в нем отсутствует возможность аутентификации (однако, возможна фильтрация по IP-адресу). Одно из основных преимуществ TFTP - простота реализации клиента, поэтому он достаточно широко используется в частности для загрузки обновлений и конфигураций сетевых устройств. DHCP - протокол динамической настройки узла (Dynamic Host Configuration Protocol); сетевой протокол, позволяющий сетевым устройствам автоматически получать IP-адрес и другие параметры, необходимые для работы в сети TCP/IP. Не вдаваясь глубоко в подробности, схема обмена сообщениями DHCP при получении параметров выглядит следующим образом: DHCPDISCOVER: клиент (в нашем случае, телефон) передает это сообщение broadcast, и использует его для поиска DHCP-серверов в своей канальной среде. В одном из полей этого пакета, в поле options, клиент передает список необходимых ему опций, наиболее распространенными из которых являются: (1) - Subnet Mask (3) - Router (6) - Domain Name Server (15) - Domain Name именно в этом поле клиент сообщает о том, что ему нужен адрес tftp сервера для загрузки конфигурационного и/или других связанных файлов. Номер опции, которая его содержит - 66 (у cisco есть аналогичная опция 150, основное отличие которой в том, что она может содержать адреса нескольких tftp серверов). DHCPOFFER: cервер отвечает на запрос клиента. Сервер может передать это сообщение как broadcast так и unicast (зависит от значений полей полученных от клиента). В этом сообщении сервер предлагает клиенту параметры, которые он может отдать в текущей конфигурации. Если в сегменте сети клиента несколько DHCP серверов, то получив запрос, они все отправляют OFFER-ы. После того, как клиент выбрал, OFFER какого из DHCP серверов принять, он отправляет следующий пакет: DHCPREQUEST: казалось бы, если клиент определился, какой DHCP сервер "пришелся ему по душе", можно передать unicast-запрос этому серверу; однако предается broadcast, чтобы уведомить остальные DHCP серверы о своём выборе (добавляется опция 54, указывающая адрес выбранного DHCP-сервера), и они могли освободить зарезервированные OFFER-ы. DHCPACK: cервер отправляет подтверждение клиенту. После этого клиент настраивает свой сетевой интерфейс, используя предоставленные параметры и опции. В различных ситуациях могут еще возникать DHCPDECLINE, DHCPNAK, DHCPRELEASE, DHCPINFORM, но их рассмотрение в рамки данной статьи не входит. Для получения исчерпывающей информации о работе DHCP можно обратиться к RFC 2131: https://tools.ietf.org/html/rfc2131 Про опции 66 и 150 можно почитать здесь: https://wiki.merionet.ru/ip-telephoniya/67/dhcp-opciya-150-i-66/ https://blog.router-switch.com/2013/03/dhcp-option-150-dhcp-option-66/ Про настройку DHCP сервера и Option 66 на Mikrotik можно почитать здесь: https://wiki.merionet.ru/seti/5/nastrojka-dhcp-servera-na-mikrotik/ Чтобы передать телефону адрес tftp сервера, с которого он может получить конфигурационный файл, на DHCP сервере в параметрах области задаем Option 66, в которой указываем hostname либо IP адрес нашего tftp сервера. Настройки по-умолчанию в большинстве телефонов подразумевают получение IP-адреса по DHCP и запрос Option 66. В итоге, телефон получает IP, получает адрес tftp сервера и пытается "стянуть" оттуда файл своей конфигурации. Согласно документации Dlink, загрузка файла конфигурации происходит следующим образом: Устанавливается соединение с сервером. Проверяется наличие файла с соответствующим именем: - в первую очередь проверяется файл с именем соответствующим аппаратной платформе; - во вторую - соответствующий MAC адресу устройства; - в третью - соответствующий ID устройства; - файл с произвольным именем проверяется либо в последнюю очередь (DHCP option, UpnP) либо в первую, если он явно указан в конфигурации телефона. Проверяется версия конфигурационного файла. Если версия выше, чем текущая на телефоне, файл конфигурации применяется. Как уже говорилось ранее, файл конфигурации представляет собой текстовый документ определенного вида: Первая строка: <<VOIP CONFIG FILE>>Version:2.0002 Для того, чтобы конфигурация была применена, версия файла должна быть выше, нежели текущая на телефоне, инкрементировать требуется последний разряд версии. По-умолчанию версия конфигурации 2.0002 Пример: Текущая версия конфигурации 2.0002 на одном телефоне и 2.0004 на еще двух. Для того чтобы конфигурация применилась только на один телефон в первой строке файла конфигурации ставим <<VOIP CONFIG FILE>>Version:2.0004 для того чтобы обновить конфигурацию на всех телефонах ставим в первой строке <<VOIP CONFIG FILE>>Version:2.0005 Разделы: <GLOBAL CONFIG MODULE - содержит данные о сетевых настройках, серверах DNS, SNTP... <LAN CONFIG MODULE> - содержит данные о настройках LAN, режимах работы LAN <TELE CONFIG MODULE> - настройки расширенных функций телефонной части (Call Feature) <DSP CONFIG MODULE> - настройка кодеков <SIP CONFIG MODULE> - настройки SIP, серверы, регистрация etc... <PPPoE CONFIG MODULE> - настройки PPPoE <MMI CONFIG MODUL>E - настройки доступа и WEB интерфейса <QOS CONFIG MODULE> - qos и vlan <DHCP CONFIG MODULE> - настройки внутреннего DHCP <NAT CONFIG MODULE> - настройки NAT и ALG <PHONE CONFIG MODULE> - настройки телефонной части, в этом же разделе настраивается remote phonebook и extension key. <SCREEN KEY CONFIG MODULE> - настройка программных клавиш (для версии F3) <AUTOUPDATE CONFIG MODULE> - настройки Autoprovision <VPN CONFIG MODULE> - настройки VPN <TR069 CONFIG MODULE> - настройки TR069 Заканчивается файл строкой <<END OF FILE>> Для обновления какой-либо опции конфигурации телефона, чтобы файл конфигурации был принят телефоном достаточно наличие следующих полей: <<VOIP CONFIG FILE>> Version:2.0002 <Название необходимого раздела> Название опции: значение <<END OF FILE>> Например, для обновления имени хоста телефона необходимо создать следующий файл конфигурации: <<VOIP CONFIG FILE>>Version:2.0003 <GLOBAL CONFIG MODULE> Host Name :ReceptionPhone <<END OF FILE>> Все остальные элементы являются необязательными. Итак, овал нарисован. Остались сущие мелочи - реализовать инструмент для создания конфигураций и дальнейшего управления ими. Займемся этим в следующей публикации.
ВЕСЕННИЕ СКИДКИ
40%
50%
60%
До конца акции: 30 дней 24 : 59 : 59