По вашему запросу ничего не найдено :(
Убедитесь, что запрос написан правильно, или посмотрите другие наши статьи:
img
В современной среде информационной безопасности преобладают криптоминирующие вредоносные программы, также известные как криптоджеккинг. В 2019 году 38% всех компаний в мире пострадали от такого вредоносного ПО. В этой статье мы подробно рассмотрим типологию крипто-вредоносных программ и обсудим пять самых крупных крипто-вредоносных атак. Кроме того, дадим несколько кратких рекомендаций о том, как защититься от таких программ. Типология крипто-вредоносных программ Крипто-вредоносные программы можно разделить на три категории: вредоносные ПО для крипто-майнинга; крипто-вымогатели; крипто-кражи. Вредоносные ПО для крипто-майнинга Вредоносное ПО для крипто-майнинга — это вредоносное ПО, которое заражает компьютер, чтобы использовать его вычислительную мощность для того, чтобы майнить криптовалюту без авторизации. После заражения компьютера этот тип вредоносных программ может оставаться незамеченным в течение долгого времени, поскольку он предназначен для работы без привлечения внимания. Одним из признаков, указывающих на заражение вредоносным ПО для шифрования, является медленная работа зараженного компьютера. В некоторых крайних случаях вредоносное ПО может полностью блокировать работу зараженного компьютера из-за полного истощения ресурсов этого ПК. Вредоносное ПО для крипто-майнинга может затронуть не только настольные компьютеры, но и ноутбуки, мобильные телефоны и устройства Интернета вещей (IoT). Чтобы проиллюстрировать работу подобного вредоносного ПО, мы кратко обсудим один конкретный тип такого вредоносного ПО, а именно WannaMine. Он использует зараженный компьютер, чтобы генерировать криптовалюту Monero. WannaMine использует хакерский инструмент EternalBlue. Первоначально его разработалоАгентство национальной безопасности США (NSA), но позже послужил основой для различных вредоносных приложений, включая печально известный WannaCry. Криптовалюта, генерируемая через WannaMine, добавляется в цифровой кошелек мошенников. По оценкам, более 500 миллионов пользователей Интернета добывают криптовалюты на своих вычислительных устройствах, не зная об этом. Крипто -вымогатели Крипто-вымогатель — это вредоносная программа для шифрования файлов, которые хранятся на зараженном компьютере, и просит пользователей этого компьютера заплатить выкуп за доступ к зашифрованным файлам. Выкуп, как правило, варьируется от 300 до 500 долларов США и должен быть оплачен в биткойнах или другой криптовалюте. Крипто-вымогатели могут нанести существенный урон мировой экономике. Например, предполагаемые убытки от крипто-вымогателей WannaCry составляют 4 миллиарда долларов США. Около 230 000 компьютеров по всему миру заразились этой программой, включая компьютеры больниц и телекоммуникационных компаний. За два месяца до появления WannaCry Microsoft выпустила исправление безопасности, которое защищало пользователей Microsoft Windows от WannaCry и других вредоносных программ, основанных на эксплойте EternalBlue. Однако, поскольку многие люди и организации не обновили свои операционные системы своевременно, WannaCry удалось заразить большое количество компьютеров. Как только WannaCry заражает компьютер, он шифрует файлы, хранящиеся на этом компьютере, и требует выкуп: от 300 до 600 долларов. Однако большинство жертв, которые заплатили запрошенный выкуп, не расшифровали свои файлы. Некоторые исследователи утверждают, что никому не удалось расшифровать файлы, которые зашифровала WannaCry. Крипто-кража Крипто-кража направлена на тайную кражу криптовалюты у пользователей зараженных компьютеров. Например, хакерская группа Lazarus из Северной Кореи использовала приложение для обмена сообщениями Telegram для распространения вредоносных программ, позволяющих злоумышленникам красть криптовалюты. Такое вредоносное ПО часто разрабатывают хакеры из Северной Кореи, поскольку криптовалюты позволяют северокорейцам уклоняться от экономических санкций, введенных рядом стран и международных организаций. Согласно отчету ООН от 2019 года, Северная Корея получила более 2 миллиардов долларов США в виде криптовалюты путем взлома криптовалютных бирж и других организаций. Топ 5 крипто-вредоносных атак: 1. Retadup Retadup, ПО для крипто-майнинга, должно быть первым в списке, потому что ему удалось заразить и создать ботнет из 850 000 компьютеров. Ботнет, который считался одним из крупнейших в мире, обнаружила и уничтожила французская полиция. 2. Smominru Программное обеспечение для крипто-вымогательства Smominru находится на втором месте, поскольку оно затронуло более 500 000 машин. 3. CryptoLocker Вредоносная программа CryptoLocker получает бронзовую медаль, поскольку она также затронула более 500 000 компьютеров. Однако ущерб, причиненный им, пока неясен. 4. Bayrob Group Вредоносное ПО для крипто-майнинга Bayrob Group, затронувшее более 400 000 компьютеров, занимает четвертое место. Стоит отметить, что два члена преступной группы были экстрадированы из Румынии в США и осуждены за киберпреступность и мошенничество. 5. WannaCry Пятое место занимает WannaCry, крипто-вымогатель, который более подробно обсуждался выше. Заражено 230 000 компьютеров. Как защититься от крипто-вредоносных программ Частные лица и организации, которые хотят защитить себя от крипто-вредоносных программ, должны повышать свою осведомленность в области информационной безопасности посредством образования и обучения. Это связано с тем, что крипто-вредоносные программы обычно распространяются, заманивая компьютерных пользователей открывать вредоносные вложения или нажимать на мошеннические веб-сайты. В дополнение к повышению осведомленности о крипто-вредоносных программах, необходимо регулярно устанавливать обновления программного обеспечения и исправления, чтобы предотвратить использование хакерами таких уязвимостей, как EternalBlue. И последнее, но не менее важное: крайне важно установить надежное решение для защиты от вредоносного ПО, которое выявляет и удаляет его безопасно, быстро и эффективно.
img
Кто такой DevOps-инженер, чем он занимается в мире IT-разработки и как им стать В этой статье мы познакомим вас с популярной профессией DevOps-инженера и расскажем, что он делает, как им стать, где искать работу и – самое главное – сколько можно зарабатывать. В отличие от некоторых модных карьерных направлений, которые появляются и исчезают, DevOps — это область, которая была и будет востребованной. Согласно прогнозам, к концу 2023 года рынок DevOps вырастет до невероятных $10.3 млрд, так что получение должности DevOps-инженера — это ваш первый шаг к долгосрочной карьере. Если вам нужна работа, сочетающая технологии и творческий подход, то должность DevOps-инженера — это для вас! В этой статье расскажем, как стартовать в этой сфере и что о ней следует знать. Кто такой DevOps-инженер Это специалист, на чьих плечах лежит ответственность за совершенствование и автоматизацию процессов разработки и эксплуатации программного обеспечения. Проще говоря, это методология, объединяющая разработку (Dev) и эксплуатацию (Ops) в разработке программного обеспечения с акцентом на скорость и качество. Задача DevOps-инженера состоит в том, чтобы наладить коммуникацию и сотрудничество между этими двумя направлениями. Что делает DevOps-инженер DevOps-инженер отвечает за создание инструментов, улучшающих процессы разработки, повышение производительности, надежности и безопасности программных продуктов. Ключевые области занятости devops-инженера включают в себя: автоматизацию развертывания и масштабирования систем, управление инфраструктурой как кодом (IaC), непрерывную поставку и интеграцию (CI/CD), мониторинг и логирование, управление конфигурацией и изменениями, работу с облачными платформами и микросервисной архитектурой. Где работать DevOps-инженеру DevOps-инженеры востребованы в различных сферах и отраслях. Они могут работать как в крупных корпорациях, так и в стартапах, где процессы разработки носят более гибкий и динамичный характер. DevOps-подход активно внедряется в современных IT-компаниях, разработчиками облачных решений, а также в корпоративных IT-отделах. Профессионал в этой области может работать как в операционных подразделениях, так и в команде разработки ПО. Необходимые навыки для DevOps-инженера Помните, что DevOps — это не просто набор инструментов или название должности. Это группа скиллов, в которой особое внимание уделяется командной работе, коммуникации и автоматизации. Рассказываем подробнее о каждом из них: навыки программирования: специалист должен обладать опытом в программировании на языках, таких как Python, Ruby, Go, Java, Rust, C и C++. Проще говоря, он должен уметь писать код, который автоматизирует процессы разработки и операционной работы. Навыки работы с системами контроля версий: DevOps-инженер должен знать, как работать с системами контроля версий, такими как Git. Он также отвечает за управление конфигурацией серверов и инфраструктуры. Навыки работы с облачными технологиями: специалист должен уметь работать с AWS, Azure или Google Cloud. Он должен уметь настраивать инфраструктуру в облаке и управлять ресурсами. Навыки автоматизации: DevOps-инженеру требуется автоматизировать процессы разработки и операционной работы. Он должен знать, как настроить CI/CD-пайплайны, тестирование и деплоймент. Навыки мониторинга и логирования. DevOps-инженер должен уметь анализировать логи и метрики, чтобы быстро реагировать на проблемы. Навыки коммуникации. Специалист должен уметь общаться с разработчиками, тестировщиками и операторами. Он должен быть готов к сотрудничеству, давать понятные ТЗ и уметь объяснять сложные технические вопросы простым языком. В рамках DevOps вы будете участвовать во всем цикле разработки ПО — от планирования до внедрения. Как правило, работа в качестве DevOps начинается с должности начального уровня, например, релиз-менеджера или младшего инженера. По мере накопления опыта внедрения инструментов и процессов, можно вырасти: и стать DevOps-инженером, архитектором или системным инженером. Чтобы построить карьеру в качестве DevOps, вам потребуется техническое образование в области информатики или информационных технологий, а также понимание Linux, веб-разработки и Java. Поскольку DevOps охватывает весь жизненный цикл программного обеспечения, вместо того чтобы сосредоточиться на одной области, инженеры DevOps работают над оптимизацией каждого этапа процесса. Это означает, что они будут решать множество задач в день, попутно находя точки роста для продукта. Плюсы и минусы профессии DevOps-инженера Поскольку 86% организаций считают необходимым быстро разрабатывать новое программное обеспечение, вклад DevOps в компанию очень большой. Давайте рассмотрим, какие плюсы у этой работы есть для вас как для сотрудника: Высокий спрос на рынке труда: инженеры востребованы во многих компаниях, в том числе и зарубежных. Именно поэтому DevOps стала такой популярной методологией разработки во всем мире. Высокая зарплата: DevOps-инженеры могут получать от 70 до 600 тысяч рублей — доход всегда растет вместе с умениями и опытом. Большой выбор инструментов: DevOps-инженеры могут использовать широкий спектр инструментов для автоматизации и управления процессами. Быстрый рост в карьере: при условии постоянного обучения и оттачивания технических скиллов DevOps-инженер может продвигаться по карьерной лестнице, не сидя годами на одной зарплате. К тому же, эта роль предполагает работу с другими техническими специалистами, фреймворками, языками программирования, так что вы получите глубокое понимание экосистемы DevOps — и это тоже поможет росту в долгосрочной перспективе. Минусы: Высокие требования к знаниям и навыкам. DevOps-инженеру необходимо постоянно обучаться и развиваться, чтобы оставаться востребованным. Большая ответственность. DevOps-инженер отвечает за автоматизацию процессов разработки и операционной работы, что может повлечь за собой серьезные последствия в случае ошибки или сбоя.. Необходимость быстрого реагирования. Специалист должен быть готов к быстрому реагированию на изменения в проекте или системе, чтобы ничего не «рухнуло». Высокая конкуренция. Чтобы получить работу DevOps-инженером, понадобится подтвердить свои технические навыки и софт-скиллы. Поможет и обучение в техническом вузе или на профильных курсах. Овертаймы или необходимость работать ночью. В некоторых случаях DevOps-инженер может столкнуться с тем, что ему придется выходить в ночные смены, чтобы обеспечить бесперебойную работу системы, либо задерживаться на работе. Такие моменты можно обсудить с руководством и договориться о дополнительной оплате. DevOps-инженер: зарплата и вакансии Зарплата DevOps-инженера в России может значительно варьироваться в зависимости от опыта работы, компании, региона и других факторов. По данным HeadHunter, средняя зарплата DevOps-инженера в России составляет около 130 000 — 150 000 рублей в месяц. В Москве и Санкт-Петербурге зарплаты могут быть выше и составлять от 150 000 до 200 000 рублей в месяц. Учитывайте, что зарплата может зависеть от уровня опыта и квалификации. Новички в этой области могут начинать с зарплаты 70 000 — 80 000 рублей в месяц, тогда как опытные DevOps-инженеры могут зарабатывать более 250 000 рублей в месяц. Как стать DevOps-инженером с нуля Будущее профессии DevOps-инженера выглядит блестящим. Возможно, после прочтения статьи вам показалось, что нужно обладать огромным количеством навыков для обучения этой профессии. Но это не так: начать карьеру DevOps-инженера с нуля можно и даже нужно! Важно выбирать учебные программы, которые охватывают не только основы DevOps, но и практику применения современных инструментов автоматизации, управления конфигурацией и работы с облачными платформами. У нас есть курс «DevOps-инженер с нуля», где вы научитесь использовать инструменты и методы DevOps для автоматизации тестирования, сборки и развертывания кода, управления инфраструктурой и ускорения процесса доставки продуктов в продакшн. Что в итоге У IT-компаний, которые наращивают скорость и эффективность DevOps, сочетая его с другими технологиями, есть потенциал стать лидерами — как в плане технологий, так и в плане доверия клиентов. DevOps-инженер способен повысить качество выпускаемого ПО, улучшить его безопасность и наладить отношения с пользователями. Карьерные возможности, высокие зарплаты и постоянно растущий рынок труда делают профессию привлекательной для тех, кто стремится растить свои навыки в IT. Помните, что единственный способ продвинуться в любой карьере — постоянно быть в курсе последних тенденций и технологий в этой области. Это не только поможет вам быть в курсе новостей сферы, но и поможет получить лучшую работу и зарплату.
img
В этой статье мы рассмотрим механизмы масштабируемости BGP и связанные с ними концепции. Предыдущие статьи цикла про BGP: Основы протокола BGP Построение маршрута протоколом BGP Формирование соседства в BGP Оповещения NLRI и политики маршрутизации BGP Видео: Основы BGP за 7 минут Механизмы масштабируемости BGP Истощение доступных автономных системных номеров явилось проблемой точно так же, как было проблемой для интернета истощение IP-адресов. Чтобы решить эту проблему, инженеры обратились к знакомому решению. Они обозначили диапазон номеров AS только для частного использования. Это позволяет вам экспериментировать с AS конструкцией и политикой, например, в лаборатории и использовать числа, которые гарантированно не конфликтуют с интернет-системами. Помните, что число AS-это 16-разрядное число, допускающее до 65 536 чисел AS. Диапазон для частного использования: 64512-65535. Еще одним решением проблемы дефицита, стало расширение адресного пространства имен. Было утверждено пространство, представляющее собой 32-разрядное число. В течение длительного времени, с точки зрения масштабируемости, одноранговые группы Border Gateway Protocol считались абсолютной необходимостью. Мы настраивали одноранговые группы для уменьшения конфигурационных файлов. Так же мы настраивали одноранговые группы для повышения производительности. Преимущества производительности были нивелированы с помощью значительно улучшенных механизмов, сейчас. Несмотря на это, многие организации все еще используют одноранговые группы, поскольку они поняты и легки в настройке. Появились в BGP одноранговые группы для решения нелепой проблемы избыточности в BGP конфигурации. Рассмотрим простой (и очень маленький) пример 1. Даже этот простой пример отображает большое количество избыточной конфигурации. Пример 1: типичная конфигурация BGP без одноранговых групп ATL1(config)#router bgp 200 ATL1( config-router)#neiqhbor 10.30.30.5 remote-as 200 ATL1( config-router)#neiqhbor 10.30.30.5 update- source lo0 ATL1( config= router)#neiqhbor 10.30 .30.5 password S34Dfr112s1WP ATL1(config-router)#neiqhbor 10.40.40.4 remote-as 200 ATL1( config-router)#neiqhbor 10.40.40 .4 update- source lo0 ATL1(config-router)#neiqhbor 10.40.40.4 password S34Dfr112s1WP Очевидно, что все команды настройки относятся к конкретному соседу. И многие из ваших соседей будут иметь те же самые характеристики. Имеет смысл сгруппировать их настройки в одноранговую группу. Пример 2 показывает, как можно настроить и использовать одноранговую группу BGP. Пример 2: одноранговые группы BGP ATL2 (config)#router bgp 200 ATL2 (config-router)#neighbor MYPEERGR1 peer-group ATL2 (config-router)#neighbor MYPEERGR1 remote-as 200 ATL2 (config-router)#neighbor MYPEERG1l update-source lo0 ATL2(config-router)#neighbor MYPEERGRl next-hop-self ATL2 (config-router)#neighbor 10.40.40 .4 peer-group MYPEERGR1 ATL2 (config-router)#neighbor 10.50.50 .5 peer-group MYPEERGR1 Имейте в виду, что, если у вас есть определенные настройки для конкретного соседа, вы все равно можете ввести их в конфигурацию, и они будут применяться в дополнение к настройкам одноранговой группы. Почему же так часто использовались одноранговые группы? Они улучшали производительность. Собственно говоря, это и было первоначальной причиной их создания. Более современный (и более эффективный) подход заключается в использовании шаблонов сеансов для сокращения конфигураций. А с точки зрения повышения производительности теперь у нас есть (начиная с iOS 12 и более поздних версий) динамические группы обновлений. Они обеспечивают повышение производительности без необходимости настраивать что-либо в отношении одноранговых групп или шаблонов. Когда вы изучаете одноранговую группу, вы понимаете, что все это похоже на шаблон для настроек. И это позволит вам использовать параметры сеанса, а также параметры политики. Что ж, новая и усовершенствованная методология разделяет эти функциональные возможности на шаблоны сессий и шаблоны политики. Благодаря шаблонам сеансов и шаблонам политик мы настраиваем параметры, необходимые для правильной установки сеанса, и помещаем эти параметры в шаблон сеанса. Те параметры, которые связаны с действиями политик, мы помещаем в шаблон политики. Одна из замечательных вещей в использовании этих шаблонов сеансов или политик, а также того и другого, заключается в том, что они следуют модели наследования. У вас может быть шаблон сеанса, который выполняет определенные действия с сеансом. Затем вы можете настроить прямое наследование так, чтобы при создании другого наследования оно включало в себя вещи, созданные ранее. Эта модель наследования дает нам большую гибкость, и мы можем создать действительно хорошие масштабируемые проекты для реализаций BGP. Вы можете использовать шаблоны или одноранговые группы, но это будет взаимоисключающий выбор. Так что определитесь со своим подходом заранее. Вы должны заранее определиться, что использовать: использовать ли устаревший подход одноранговых групп или же использовать подход шаблонов сеанса и политики. После выбора подхода придерживайтесь его, так как, использовать оба подхода одновременно нельзя. Теперь можно предположить, что конфигурация для шаблонов сеансов будет довольно простой, и это так. Помните, прежде всего, все что мы делаем здесь и сейчас, относится к конкретной сессии. Поэтому, если мы хотим установить timers, нам нужно установить remote-as – и это будет считается параметром сеанса. Например, мы делаем update source. Мы настраиваем eBGP multihop. Все это имеет отношение к текущему сеансу, и именно это мы будем прописывать в шаблоне сеанса. Обратите внимание, что мы начинаем с создания шаблона. Поэтому используем команду template peer-session, а затем зададим ему имя. И тогда в режиме конфигурации шаблона можем настроить наследование, которое позволит наследовать настройки от другого однорангового сеанса. Можем установить наш remote-as как и/или update source. После завершения, мы используем команду exit-peer-session, чтобы выйти из режима конфигурации для этого сеанса. Пример 3 показывает конфигурацию шаблона сеанса. Пример 3: Шаблоны сеансов BGP ATL2#conf t Enter configuration commands, one per line. End with CNTL/Z. ATL2 (config)#router bgp 200 ATL2 (config-router)#template peer- session MYNAME ATL2 (config-router-stmp)#inherit peer- session MYOTHERNAME ATL2 (config- router-stmp )#remote-as 200 ATL2(config-router-stmp )#password MySecrectPass123 ATL2 (config-router-stmp )#exit-peer-session ATL2 (config-router)#neiqhbor 10.30.30 .10 inherit peer-session MYNAME ATL2 (config-router)#end ATL2# Это простой пример настройки соседства с помощью оператора neighbor и использования наследования однорангового сеанса. Затем присваивается имя однорангового сеанса, созданного нами для нашего шаблона сеанса. Это соседство наследует параметры сеанса. Помните, что, если вы хотите сделать дополнительную настройку соседства, можно просто присвоить соседу IP-адрес, а затем выполнить любые настройки вне шаблона однорангового сеанса, которые вы хотите дать этому соседу. Таким образом, у вас есть та же гибкость, которую мы видели с одноранговыми группами, где вы можете настроить индивидуальные параметры для этого конкретного соседа вне шаблонного подхода этого соседства. Вы можете подумать, что шаблоны политик будут иметь сходную конструкцию и использование с шаблонами сеансов, и вы будете правы. Помните, что если ваши шаблоны сеансов находятся там, где мы собираемся настроить параметры, которые будут относиться к сеансу BGP, то, конечно, шаблоны политик будут храниться там, где мы храним параметры, которые будут применяться к политике. Пример 4 показывает настройку и использование шаблона политики BGP. Пример 4: Шаблоны политики BGP ATL2#conf t Enter configuration commands, one per line. End with CNTL/Z. ATL2 (config)#router bgp 200 ATL2(config-router)#template peer-policy MYPOLICYNAME ATL2 (config-router-ptmp )#next-hop-self ATL2 (config-router-ptmp )#route-map MYMAP out ATL2 (config-router-ptmp )#allowas-in ATL2 (config-router-ptmp )#exit-peer-policy ATL2 (config-router)#neighbor 10.40.40.10 remote-as 200 ATL2 (config-router)#neighbor 10.40.40.10 inherit peer-policy MYNAME ATL2 (config-router)#end ATL2# Да, все эти параметры, которые мы обсуждали при изучении манипуляций с политикой, будут тем, что мы будем делать внутри шаблона политики. Однако одним из ключевых отличий между нашим шаблоном политики и шаблоном сеанса является тот факт, что наследование здесь будет еще более гибким. Например, мы можем перейти к семи различным шаблонам, от которых мы можем непосредственно наследовать политику. Это дает нам еще более мощные возможности наследования с помощью шаблонов политик по сравнению с шаблонами сеансов. Опять же, если мы хотим сделать независимые индивидуальные настройки политики для конкретного соседа, мы можем сделать это, добавив соответствующие команды соседства. Благодаря предотвращению циклов и правилу разделения горизонта (split-horizon rule) IBGP, среди прочих факторов, нам нужно придумать определенные решения масштабируемости для пирингов IBGP. Одним из таких решений является router reflector. Рис. 1: Пример топологии router reflector Конфигурация router reflector удивительно проста, поскольку все это обрабатывается на самом router reflector (R3). Клиенты route reflector – это R4, R5 и R6. Они совершенно не знают о конфигурации и настроены для пиринга IBGP с R3 как обычно. Пример 5 показывает пример конфигурации router reflector. Обратите внимание, что это происходит через простую спецификацию клиента router reflector. Пример 5: BGP ROUTE REFLECTOR R3#configure terminal Enter configuration commands, one per line. End with CNTL/Z. R3 (config)#router bgp 200 R3 (config-router)#neighbor 10.50.50.10 remote -as 200 R3 (config-router)#neighbor 10.50.50.10 route-reflector-client R3 (config-router)#end R3# Route reflector автоматически создает значение идентификатора (ID) кластера для кластера, и это устройство и эти клиенты будут частью того, что мы называем кластером route reflector. Cisco рекомендует разрешить автоматическое назначение идентификатора кластера для идентификации клиента. Это 32-разрядный идентификатор, который BGP извлекает из route reflector. Магия Route reflector заключается в том, как меняются правила IBGP. Например, если обновление поступает от клиента Route reflector (скажем, R4), то устройство R3 «отражает» это обновление своим другим клиентам (R5 и R6), а также своим неклиентам (R1 и R2). Это обновление происходит даже при том, что конфигурация для IBGP значительно короче полной сетки пирингов, которая обычно требуется. А теперь что будет, если обновление поступит от не клиента Route reflector (R1)? Route reflector отправит это обновление всем своим клиентам Route reflector (R4, R5 и R6). Но тогда R3 будет следовать правилам IBGP, и в этом случае он не будет отправлять обновление через IBGP другому не клиенту Route reflector (R2). Чтобы решить эту проблему, необходимо будет создать пиринг от R1 к устройству R2 с помощью IBGP. Или, можно добавить R2 в качестве клиента Route reflector R3. Есть еще один способ, которым мы могли бы решить проблему с масштабируемостью IBGP- это манипулирование поведением EBGP. Мы делаем это с конфедерациями. Вы просто не замечаете, что конфедерации используются так же часто, как Route reflector. И причина состоит в том, что они усложняют нашу топологию, и делают поиск неисправностей более сложным. На рис. 2 показан пример топологии конфедерации. Рисунок 2: Пример топологии конфедерации Мы имеем наш AS 100. Для создания конфедерации необходимо создать небольшие субавтономные системы внутри нашей основной автономной системы. Мы их пронумеруем с помощью, номеров автономных систем только для частного использования. Что мы имеем, когда манипулируем поведением eBGP, что бы имеет конфедерацию EBGP пирингов? Это позволяет нам установить пиринги между соответствующими устройствами, которые хотим использовать в этих автономных системах. Как вы можете догадаться, они не будут следовать тем же правилам, что и наши стандартные пиринги EBGP. Еще один важный момент заключается в том, что все это для внешнего неконфедеративного мира выглядит просто как единый AS 100. Внутри мы видим реальные AS, и конфедеративные отношения EBGP между ними. Помимо устранения проблемы разделения горизонта IBGP, что же меняется с пирингами конфедерации EBGP? В следующем прыжке поведение должно измениться. Следующий прыжок не меняется тогда, когда мы переходим от одной из этих небольших конфедераций внутри нашей АС к другой конфедерации. Вновь добавленные атрибуты обеспечивают защиту от цикла из-за конфедерации. Атрибут AS_confed_sequence и AS_confed_set используются в качестве механизмов предотвращения циклов. Пример 6 показывает пример частичной настройки конфедерации BGP. R3#configure terminal Enter configuration commands, one per line. End with CNTL/Z. R3 (config)#router bgp 65501 R3(config-router)#bgp confederation identifier 100 R3 (config-router)#bgp confederation peers 65502 R3 (config-router)#neighbor 10 .20.20.1 remote-as 65502 R3 (config-router)#end R3# Иногда возникает необходимость применения общих политик к большой группе префиксов. Это делается легко, если вы помечаете префиксы специальным значением атрибута, называемым сообществом (community). Обратите внимание, что сами по себе атрибуты сообщества ничего не делают с префиксами, кроме как прикрепляют значение идентификатора. Это 32-разрядные значения (по умолчанию), которые мы можем именовать, чтобы использовать дополнительное значение. Вы можете настроить значения сообщества таким образом, чтобы они были значимы только для вас или значимы для набора AS. Вы также можете иметь префикс, который содержит несколько значений атрибутов сообщества. Кроме того, можно легко добавлять, изменять или удалять значения сообщества по мере необходимости в вашей топологии BGP. Атрибуты сообщества могут быть представлены в нескольких форматах. Более старый формат выглядит следующим образом: Decimal - 0 to 4294967200 (в десятичном) Hexadecimal – 0x0 to 0xffffffa0 (в шестнадцатеричном) Более новый формат: AA:NN AA - это 16-битное число, которое представляет ваш номер AS, а затем идет 16-битное число, используемое для задания значимости своей политике AS. Таким образом, вы можете задать для AS 100 100:101, где 101- это номер внутренней политики, которую вы хотите применить к префиксам. Есть также хорошо известные общественные значения. Это: No-export - префиксы не объявляются за пределами AS. Вы можете установить это значение, когда отправляете префикс в соседний AS. чтобы заставить его (соседний AS) не объявлять префикс за собственные границы. Local-AS - префиксы с этим атрибутом сообщества никогда не объявляются за пределами локального AS No-advertise - префиксы с этим атрибутом сообщества не объявляются ни на одном устройстве Эти хорошо известные атрибуты сообщества просто идентифицируются по их зарезервированным именам. Есть также расширенные сообщества, которые также можно использовать. Они предлагают 64-битную версию для идентификации сообществ! Задание параметров осуществляется настройкой TYPE:VALUE. Выглядит оно следующим образом: 65535:4294967295 Как вы можете догадаться, мы устанавливаем значения сообщества, используя route maps. Пример 7 показывает пример настроек. Обратите внимание, что в этом примере также используется список префиксов. Они часто используются в BGP для гибкой идентификации многих префиксов. Они гораздо более гибки, чем списки доступа для этой цели. Пример 7: Установка значений сообщества в BGP R3#configure terminal Enter configuration commands, one per line. End with CNTL/Z. R3(config)#ip prefix-list MYLIST permit 172.16.0.0/16 le 32 R3(config)#route-map SETCOMM permit 10 R3(config-route-map)#match ip address prefix-list MYLIST R3(config-route-map)#set community no-export R3(config-route-map)#route-map SETCOMM permit 20 R3(config)#router bgp 100 R3(config-router)#neighbor 10.20.20.1 route-map SETCOMM out R3 (config-router)#neighbor 10.20.20.1 send-community R3(config-router)#end R3#
ВЕСЕННИЕ СКИДКИ
40%
50%
60%
До конца акции: 30 дней 24 : 59 : 59