По вашему запросу ничего не найдено :(
Убедитесь, что запрос написан правильно, или посмотрите другие наши статьи:
img
Привет, Мир! Сейчас расскажем об одном полезном методе траблшутинга и поиска проблем на роутерах MikroTik. Суть данного метода заключается в том, чтобы отлавливать (“сниффить”) пакеты, проходящие через определённые интерфейсы нашего роутера и анализировать их сразу же при помощи Wireshark. Prerequisites Итак, для того, чтобы воспользоваться данным методом нам понадобится: Роутер MikroTik (в нашем случае использовался RB951Ui-2HnD с версией прошивки RouterOS 6.40.2 ) Программа Wireshark (в нашем случае версия 2.4.1) Компьютер или сервер, находящийся в одной сети с роутером с запущенным Wireshark’ом Настройка Первым делом открываем Wireshark, выбираем интерфейс, на котором хотим “сниффить” (в нашем случае это Ethernet, то есть интерфейс, с помощью которого компьютер подключается к роутеру) и устанавливаем следующий фильтр - udp port 37008. Как показано на рисунке: Понятно, что если мы запустим захват пакетов без этого фильтра, то нам просто вывалится весь трафик, который проходит через этот интерфейс, а мы этого не хотим. Что же это за фильтр такой и что за порт - 37008? Дело в том, что MikroTik шлёт UDP дэйтаграммы, то есть весь перехваченный трафик, именно на этот порт streaming server’а, а в качестве этого стриминг сервера, как вы могли догадаться, у нас выступает наш компьютер с запущенным Wireshark’ом. Эти пакеты инкапсулируются по протоколу TZSP (TaZmen Sniffer Protocol), который используется для переноса в себе других протоколов. Итак, запускаем перехват пакетов на определённом интерфейсе с фильтром udp port 37008 и видим, что ничего не происходит и пакетов нет. А теперь самое интересное – подключаемся к MikroTik’у через WinBox, переходим в раздел Tools далее Packet Sniffer и видим следующее окно с настройками: На вкладке General можем оставить всё по умолчанию, переходим на вкладку Streaming: Ставим галочку в Streaming Enabled, в поле Server указываем IP адрес нашего компьютера, на котором запустили Wireshark и ставим галочку на Filter Stream, чтобы активировать фильтр, который будет настраиваться на следующей вкладке - Filter На данной вкладке мы можем отфильтровать интересующий нас трафик. Например, у нас в сети есть IP-АТС Asterisk и мы хотим посмотреть, какие пакеты он получает и отправляет через роутер MikroTik. Так, например, можно отследить коммуникацию IP-АТС с сервером провайдера VoIP услуг. Итак, выбираем интерфейсы, на которых хотим отлавливать пакеты (в нашем случае это bridge), далее отфильтруем трафик по определённому IP-адресу в поле IP Address (Наша IP-АТС), укажем протокол - 17 (udp) и порт 5060 (sip). Направление укажем любое - any и Filter Operation = or , то есть логика работы данного фильтра – “или”. Если вы хотите отлавливать пакеты только по жёстко определённому фильтру, то логику следует указать and, то есть – совпадение всех условий фильтра. Далее нажимаем Apply и Start и видим, что сниффер перешёл в статус “running” Отлично, теперь отправляемся в Wireshark и видим, что он нам уже наловил нужных пакетов в соответствии с правилами фильтра. В нашем случае – это коммуникация IP-АТС Asterisk с сервером провайдера VoIP услуг, запрос на регистрацию и подтверждение с обратной стороны. Обратите внимание, что тип инкапсуляции - TZSP, однако, Wireshark смог правильно деинкапсулировать эти пакеты и отобразить нам пакеты SIP.
img
Мы продолжаем постигать основы важнейшего протокола, использующегося в IP телефонии и в сегодняшней статье рассмотрим основные сценарии установления соединения, а также работу основных компонентов протокола SIP. Протокол SIP имеет 3 стандартных сценария установления соединения, которые отличаются наличием и участием тех или и иных устройств. Пример №1 Установление соединения между User Agent’ами, когда в сети отсутствуют всякого рода серверы. Простейшим примером является сеанс связи, в котором принимают участие только два пользователя. Терминальное оконечное оборудование называется UA (User Agent), когда одновременно совмещает в себе функции UAС (User Agent Client) - клиента и UAS (User Agent Server) - сервера. В данном случае сценарий установления соединения будет выглядеть так: . Абонент A снимает телефонную трубку и набирает номер Абонента B, тем самым генерируя запрос INVITE , который содержит описание сеанса связи. Устройство абонента B отвечает сообщением 100 Trying , которое означает, что запрос находится в обработке. После обработки запроса устройство абонента B уведомляет его о входящем вызове, а в сторону абонента A отвечает сообщением 180 Ringing, что соответствует контролю посылки вызова. Абонент B снимает телефонную трубку, отвечая сообщением 200 OK, означающее успешную обработку запроса. Устройство абонента A прекращает прием контроля посылки вызова и посылает подтверждение ACK, означающее прием ответа на запрос INVITE. Между абонентами устанавливается разговорная фаза. Происходит передача голосового трафика по протоколу RTP (Real-Time Transfer Protocol). Важно отметить, что SIP не участвует в непосредственной передаче голоса, а лишь предоставляет условия и способы согласования открытия неких каналов обмена на основе других протоколов, в данном случае - RTP. Абонент A кладет телефонную трубку, тем самым инициируя завершение передачи голосового потока. Устройство абонента A генерирует запрос Bye, в сторону устройства абонента B. Устройство абонента B отвечает сообщением 200 OK, означающем успешную обработку запроса Bye. Терминальное оконечное оборудование абонентов A и B возвращается в исходное состояние. Однако, данный сценарий установления соединения является самым примитивным, можно даже сказать частным. Обычно в сети присутствует SIP прокси сервер, который принимает и обрабатывает запросы от пользователей и выполняет, соответствующие этим запросам, действия. Пример №2 Рассмотрим сценарий установления соединения между двумя пользователями. В данном случае задачу поиска и приглашения абонента выполняет Прокси сервер, вызывающему пользователю необходимо знать только постоянный номер вызываемого абонента. Отметим, что функции прокси сервера выполняет офисная телефонная станция Как видно из рисунка, процесс установления и разъединения соединения происходит аналогично первому сценарию, только в качестве посредника при передаче сообщений протокола SIP выступает SIP Proxy. Пример №3 Допустим, что в сети имеется множество пользователей, число которых постоянно пополняется. Они могут менять свое фактическое положение, ставить переадресацию (redirection) на другой номер, проводить конференц – звонки и др. Для предоставления подобных сервисов требуется наличие в сети соответствующих серверов, поддерживающих ту или иную функцию. Сервер регистрации (Registration Server) для аутентификации и авторизации пользователей. Сервер определения местоположения (Allocation Server) для определения реального местонахождения пользователей. Сервер переадресации (Redirect Server) для перенаправления звонков на другие номера, в случае если пользователь настроил данную функцию. Сервер регистрации это логический элемент и обычно его функции выполняет SIP Proxy, такие совмещенные сервера называют Registar. SIP Proxy может также выполнять функции серверов определения местоположения и переадресации, такое совмещение полезно в плане масштабируемости сети. Приведем пример, когда сеть содержит некий комбинированный SIP Proxy, который поддерживает все функции, описанные выше. Допустим, что новый, еще не зарегистрированный пользователь A,вызывает пользователя B, который уже прошел процедуру авторизации. Новый User Agent A посылает серверу сообщение REGISTER , которое инициирует процесс регистрации. Т.к User Agent A ещё не зарегистрирован, то сервер Registar отвечает сообщением 401 Unauthorized Тогда User Agent A посылает серверу сообщение REGISTER + login, содержащее логин и пароль. Сервер Registar отвечает сообщением 200 OK, на этом процесс регистрации закончен. Теперь пользователь А авторизован на сервере и может совершать звонки. User Agent A инициирует установление связи с пользователем B сообщением INVITE. На данном этапе включаются функции серверов определения местоположения и переадресации, сервер отвечает сообщением 302 Moved Temporarily, означающее, что вызываемый абонент временно сменил местоположение и содержащее его новые данные для установления соединения. User Agent A отвечает сообщением ACK, которое означает прием ответа от Redirect сервера на запрос INVITE. Далее User Agent A инициирует новое установление соединения напрямую к пользователю B, в соответствии с полученными данными. Как видно из рисунка дальнейший процесс соединения происходит аналогично сценарию 1. В следующей статье мы подробно рассмотрим основные модификации протокола SIP для взаимодействия с традиционными телефонными сетями, использующими сигнализацию ОКС-7.
img
Apache Cassandra — это программное обеспечение распределенной базы данных с открытым исходным кодом для работы с базами данных NoSQL. Это программное обеспечение использует язык запросов Cassandra - CQL в качестве основы для связи. CQL хранит данные в таблицах, организованных в виде набора строк со столбцами, содержащими пары ключ-значение. Таблицы CQL сгруппированы в контейнеры данных, которые в Cassandra называются пространствами ключей (keyspace). Данные, хранящиеся в одном пространстве ключей, не связаны с другими данными в кластере. Таким образом, вы можете иметь таблицы для разных целей в отдельных пространствах ключей в кластере, и данные не будут совпадать. В этом руководстве вы узнаете, как создать таблицу Cassandra для различных целей, а также как изменять, удалять или очищать таблицы с помощью оболочки Cassandra. Выбор пространства ключей для таблицы Cassandra Прежде чем вы начнете добавлять таблицу, вам нужно определить пространство ключей, в котором вы хотите создать свою таблицу. Есть два варианта сделать это. Вариант 1: команда USE Запустите команду USE, чтобы выбрать пространство клавиш, к которому будут применяться все ваши команды. Для этого в оболочке cqlsh введите: USE keyspace_name; Затем вы можете начать добавлять таблицы. Вариант 2. Укажите имя пространства ключей в запросе Второй вариант — указать имя пространства ключей в запросе на создание таблицы. Первая часть команды перед именами столбцов и параметрами выглядит так: CREATE TABLE keyspace_name.table_name Таким образом, вы сразу же создаете таблицу в заданном пространстве ключей. Базовый синтаксис для создания таблиц Cassandra Создание таблиц с помощью CQL похоже на SQL-запросы. В этом разделе мы покажем вам основной синтаксис для создания таблиц в Cassandra. Основной синтаксис для создания таблицы выглядит следующим образом: CREATE TABLE tableName ( columnName1 dataType, columnName2 dataType, columnName2 datatype PRIMARY KEY (columnName) ); При желании вы можете определить дополнительные свойства и значения таблицы, используя WITH: WITH propertyName=propertyValue; Например, используйте его, чтобы определить, как хранить данные на диске или использовать ли сжатие. Типы первичных ключей Cassandra Каждая таблица в Cassandra должна иметь первичный ключ, что делает строку уникальной. С первичными ключами вы определяете, какой узел хранит данные и как он их разделяет. Существует несколько типов первичных ключей: Простой первичный ключ. Содержит только одно имя столбца в качестве ключа секции, чтобы определить, какие узлы будут хранить данные. Составной первичный ключ. Использует один ключ разделения и несколько столбцов кластеризации, чтобы определить, где хранить данные и как их сортировать в разделе. Составной ключ раздела. В этом случае есть несколько столбцов, которые определяют, где хранить данные. Таким образом, вы можете разбить данные на более мелкие части, чтобы распределить их по нескольким разделам, чтобы избежать горячих точек. Как создать таблицу Cassandra В следующих разделах объясняется, как создавать таблицы с различными типами первичных ключей. Сначала выберите пространство ключей, в котором вы хотите создать таблицу. В нашем случае: USE businesinfo; Каждая таблица содержит столбцы и тип данных Cassandra для каждой записи. Создать таблицу с простым первичным ключом Первый пример — это базовая таблица с поставщиками. Идентификатор уникален для каждого поставщика и будет служить первичным ключом. CQL-запрос выглядит следующим образом: CREATE TABLE suppliers ( supp_id int PRIMARY KEY, supp_city text, supp_email text, supp_fee int, supp_name text, supp_phone int ); Этот запрос создал таблицу с именем supplier с supp_id в качестве первичного ключа для таблицы. Когда вы используете простой первичный ключ с именем столбца в качестве ключа раздела, вы можете поместить его либо в начало запроса (рядом со столбцом, который будет служить первичным ключом), либо в конец, а затем указать имя столбца: CREATE TABLE suppliers ( supp_id int, supp_city text, supp_email text, supp_fee int, supp_name text, supp_phone int PRIMARY KEY(supp_id) ); Чтобы увидеть, находится ли таблица в пространстве ключей, введите: DESCRIBE TABLES; В выводе перечислены все таблицы в этом пространстве ключей, а также та, которую вы создали. Чтобы отобразить содержимое таблиц, введите: SELECT * FROM suppliers; Вывод показывает все столбцы, определенные при создании таблицы. Другой способ просмотреть сведения о таблице — использовать DESCRIBE и указать имя таблицы: DESCRIBE suppliers; В выходных данных отображаются столбцы и настройки по умолчанию для таблицы. Создать таблицу с составным первичным ключом Чтобы запросить и получить результаты, отсортированные в определенном порядке, создайте таблицу с составным первичным ключом. Например, создайте таблицу для поставщиков и всех продуктов, которые они предлагают. Поскольку продукты могут не быть уникальными для каждого поставщика, необходимо добавить один или несколько столбцов кластеризации в первичный ключ, чтобы сделать его уникальным. Схема таблицы выглядит так: CREATE TABLE suppliers_by_product ( supp_product text, supp_id int, supp_product_quantity text, PRIMARY KEY(supp_product, supp_id) ); В этом случае мы использовали supp_product и supp_id для создания уникального составного ключа. Здесь первая запись в скобках supp_product — это ключ раздела. Он определяет, где хранить данные, то есть как система разделяет данные. Следующая запись — столбец кластеризации, определяющий, как Cassandra сортирует данные, в нашем случае — по supp_id. Изображение выше показывает, что таблица была успешно создана. Чтобы проверить детали таблицы, запустите запрос DESCRIBE TABLE для новой таблицы: DESCRIBE TABLE suppliers_by_product; Настройки по умолчанию для порядка кластеризации — по возрастанию (ASC). Вы можете перейти на нисходящий (DESC), добавив следующий оператор после первичного ключа: WITH CLUSTERING ORDER BY (supp_id DESC); Мы указали один столбец кластеризации после ключа раздела. Если вам нужно отсортировать данные с использованием двух столбцов, добавьте еще один столбец в скобки первичного ключа. Создание таблиц с использованием составного ключа раздела Создание таблицы с составным ключом раздела полезно, когда на одном узле хранится большой объем данных, и вы хотите разделить нагрузку на несколько узлов. В этом случае определите первичный ключ с ключом секции, состоящим из нескольких столбцов. Вам нужно использовать двойные скобки. Затем добавьте столбцы кластеризации, как мы делали ранее, чтобы создать уникальный первичный ключ. CREATE TABLE suppliers_by_product_type ( supp_product_consume text, supp_product_stock text, supp_id int, supp_name text, PRIMARY KEY((supp_product_consume, supp_product_stock), supp_id) ); В приведенном выше примере мы разделили данные на две категории: расходные материалы поставщика и продукты, запасаемые на складе, и распределили данные с помощью составного ключа раздела. Примечание. При таком разделении каждая категория продуктов хранится на отдельном узле, а не в одном разделе. Если вместо этого вы используете составной первичный ключ с простым ключом раздела и несколькими столбцами кластеризации, то один узел будет обрабатывать все данные, отсортированные по нескольким столбцам. Удалить таблицу в Cassandra Чтобы удалить таблицу в Cassandra, используйте оператор DROP TABLE. Чтобы выбрать таблицу, которую вы хотите удалить, введите: DESCRIBE TABLES; Найдите таблицу, которую хотите удалить. Используйте имя таблицы, чтобы удалить ее: DROP TABLE suppliers_by_product_type; Запустите запрос DESCRIBE TABLES еще раз, чтобы убедиться, что вы успешно удалили таблицу. Изменить таблицу в Cassandra Cassandra CQL позволяет добавлять или удалять столбцы из таблицы. Используйте команду ALTER TABLE, чтобы внести изменения в таблицу. Добавить столбец в таблицу Перед добавлением столбца в таблицу рекомендуется просмотреть содержимое таблицы, чтобы убедиться, что имя столбца еще не существует. После проверки используйте запрос ALTER TABLE в этом формате, чтобы добавить столбец: ALTER TABLE suppliers_by_product ADD supp_name text; Снова используйте DESCRIBE TABLE, чтобы убедиться, что столбец появился в списке. Удалить столбец из таблицы Подобно добавлению столбца, вы можете удалить столбец из таблицы. Найдите столбец, который вы хотите удалить, с помощью запроса DESCRIBE TABLES. Затем введите: ALTER TABLE suppliers_by_product DROP supp_product_quantity; Примечание. Не указывайте тип данных для столбца, если вы хотите удалить его из таблицы. Вы получите ошибку “SyntaxException: line 1:48 mismatched input ‘text’ expecting EOF (ALTER TABLE suppliers_by_product DROP supp_name [text]…)” Очистить таблицу в Cassandra Если вы не хотите удалять всю таблицу, но вам нужно удалить все строки, используйте команду TRUNCATE. Например, чтобы удалить все строки из таблицы поставщиков, введите: TRUNCATE suppliers; Чтобы убедиться, что в вашей таблице больше нет строк, используйте оператор SELECT. После очистки таблицы изменения становятся постоянными, поэтому будьте осторожны при использовании этого запроса. Итоги В этом руководстве показано, как создавать таблицы в Cassandra для различных целей с использованием простых и составных первичных ключей. Примеры также включали использование составного ключа раздела для распределения данных по узлам. Мы также рассмотрели, как вы можете удалять, изменять и очищать таблицы в Cassandra. Убедитесь, что вы удаляете или вносите изменения в правильные таблицы, чтобы избежать потенциальных проблем.
ВЕСЕННИЕ СКИДКИ
40%
50%
60%
До конца акции: 30 дней 24 : 59 : 59