По вашему запросу ничего не найдено :(
Убедитесь, что запрос написан правильно, или посмотрите другие наши статьи:
img
Почитать лекцию №20 про протоколы передачи данных нижнего уровня можно тут. Обычно называется и маркируется как Wi-Fi 802.11, который широко используется для передачи данных по беспроводной сети в радиочастотах 2,4 и 5 ГГц. Микроволновые печи, радиолокационные системы, Bluetooth, некоторые любительские радиосистемы и даже радионяня также используют радиочастоту 2,4 ГГц, поэтому WiFi может создавать помехи и мешать работе другим системам. Мультиплексирование Спецификации 802.11 обычно используют форму частотного мультиплексирования для передачи большого количества информации по одному каналу или набору частот. Частота сигнала-это просто скорость, с которой сигнал меняет полярность в течение одной секунды; следовательно, сигнал 2,4 ГГц-это электрический сигнал, передаваемый по проводу, оптическому волокну или воздуху, который меняет полярность с положительной на отрицательную (или отрицательную на положительную) 2,4 × 109 раз в секунду. Чтобы понять основы беспроводной передачи сигналов, лучше всего начать с рассмотрения идеи несущей и модуляции. Рисунок 1 иллюстрирует эти концепции. На рисунке 1 выбрана одна центральная частота; канал будет представлять собой диапазон частот по обе стороны от этой центральной частоты. В результирующем канале две несущие частоты выбираются таким образом, чтобы они были ортогональны друг другу-это означает, что сигналы, передаваемые на этих двух несущих частотах, не будут мешать друг другу. Они обозначены на рисунке как OSF 1 и OSF 2. Каждая из этих несущих частот, в свою очередь, фактически является более узким каналом, позволяя модулировать фактический сигнал "0" и "1" на канале. Модуляция, в данном случае, означает изменение фактической частоты сигнала вокруг каждой из частот. Модуляция просто означает изменение несущей таким образом, чтобы сигнал передавался так, чтобы приемник мог его надежно декодировать. Таким образом, в спецификации 802.11 используется схема мультиплексирования с ортогональным частотным разделением каналов (Orthogonal Frequency Division Multiplexing- OFDM), а фактические данные кодируются с использованием частотной модуляции (Frequency Modulation-FM). Важно Один из сбивающих с толку моментов мультиплексирования заключается в том, что оно имеет два значения, а не одно. Либо это означает размещение нескольких битов на одном носителе одновременно, либо возможность одновременного взаимодействия нескольких хостов с использованием одного и того же носителя. Какое из этих двух значений подразумевается, можно понять только в конкретном контексте. В этой лекции применяется первое значение мультиплексирования, разбиение одного носителя на каналы, чтобы можно было передавать несколько битов одновременно. Скорость, с которой данные могут передаваться в такой системе (полоса пропускания), напрямую зависит от ширины каждого канала и способности передатчика выбирать ортогональные частоты. Таким образом, для увеличения скорости 802.11 были применены два разных метода. Первый - просто увеличить ширину канала, чтобы можно было использовать больше несущих частот для передачи данных. Второй - найти более эффективные способы упаковки данных в один канал с помощью более сложных методов модуляции. Например, 802.11b может использовать канал шириной 40 МГц в диапазоне 2,4 ГГц, а 802.11ac может использовать канал шириной 80 или 160 МГц в диапазоне 5 ГГц. Пространственное мультиплексирование Другие формы мультиплексирования для увеличения пропускной способности между двумя устройствами также используются в серии спецификаций 802.11. Спецификация 802.11n представила Multiple Input Multiple Output (MIMO), которые позволяют сигналу проходить разными путями через единую среду (воздух). Это может показаться невозможным, поскольку в комнате только один "воздух", но беспроводные сигналы фактически отражаются от различных объектов в комнате, что заставляет их проходить через пространство разными путями. Рисунок 2 демонстрирует это. На рисунке 2, если предположить, что передатчик использует антенну, которая будет передавать во всех направлениях (всенаправленная антенна), есть три пути через одно пространство, помеченные 1, 2 и 3. Передатчик и приемник не могут "видеть" три отдельных пути, но они могут измерять силу сигнала между каждой парой антенн и пытаться посылать различные сигналы между внешне разделенными парами, пока не найдут несколько путей, по которым могут быть отправлены различные наборы данных. Второй способ использования нескольких антенн - это формирование луча. Обычно беспроводной сигнал, передаваемый от антенны, охватывает круг (3D-шар). При формировании луча, он формируется с помощью одного из различных методов, чтобы сделать его более продолговатым. Рисунок 3 иллюстрирует эти концепции. В несформированном узоре сигнал представляет собой шар или шар вокруг кончика антенны- нарисованный сверху, он выглядит как простой круг, простирающийся до самой дальней точки в форме шара. С помощью отражателя луч может быть сформирован или сформирован в более продолговатую форму. Пространство позади отражателя и по бокам луча будет получать меньше (или вообще не получать, для очень плотных лучей) мощности передачи. Как можно построить такой отражатель? Самый простой способ - это физический барьер, настроенный на отражение силы сигнала, подобно тому, как зеркало отражает свет или стена отражает звук. Ключ - это точка в сигнале передачи, в которой устанавливается физический барьер. Рисунок 4 будет использоваться для объяснения ключевых моментов в форме сигнала, отражении и гашении. Типичная форма волны следует за синусоидальной волной, которая начинается с нулевой мощности, увеличивается до максимальной положительной мощности, затем возвращается к нулевой мощности, а затем проходит цикл положительной и отрицательной мощности. Каждый из них представляет собой цикл- частота относится к числу повторений этого цикла в секунду. Вся длина волны в пространстве вдоль провода или оптического волокна называется длиной волны. Длина волны обратно пропорциональна частоте- чем выше частота, тем короче длина волны. Ключевой момент, который следует отметить на этой диаграмме, - это состояние сигнала в точках четверти и половины длины волны. В четвертьволновой точке сигнал достигает наивысшей мощности; если объект или другой сигнал интерферирует в этой точке, сигнал будет либо поглощен, либо отражен. В точке полуволны сигнал находится на минимальной мощности; если нет смещения или постоянного напряжения на сигнале, сигнал достигнет нулевой мощности. Чтобы отразить сигнал, вы можете расположить физический объект так, чтобы он отражал мощность только в точке четверти волны. Физическое расстояние, необходимое для этого, будет, конечно, зависеть от частоты, так же как длина волны зависит от частоты. Физические отражатели просты. Что делать, если вы хотите иметь возможность динамически формировать луч без использования физического отражателя? Рисунок 5 иллюстрирует принципы, которые вы можете использовать для этого. Светло-серые пунктирные линии на рисунке 5 представляют собой маркер фазы; два сигнала находятся в фазе, если их пики выровнены, как показано слева. Два сигнала, показанные в середине, находятся на четверть вне фазы, так как пик одного сигнала совпадает с нулевой точкой или минимумом второго сигнала. Третья пара сигналов, показанная в крайнем правом углу, является комплементарной, или на 180 градусов вне фазы, так как положительный пик одного сигнала совпадает с отрицательным пиком второго сигнала. Первая пара сигналов будет складываться вместе; третья пара сигналов будет погашена. Вторая пара может, если она правильно составлена, отражать друг друга. Эти три эффекта позволяют сформировать пучок, как показано на рисунке 6. Одна система формирования луча может использовать или не использовать все эти компоненты, но общая идея состоит в том, чтобы ограничить луч в пределах физического пространства в среде - как правило, свободное распространение в воздухе. Формирование луча позволяет использовать общую физическую среду в качестве нескольких различных каналов связи, как показано на рисунке 7. На рисунке 7 беспроводной маршрутизатор использовал свои возможности формирования луча для формирования трех разных лучей, каждый из которых направлен на другой хост. Маршрутизатор теперь может отправлять трафик по всем трем из этих сформированных лучей с более высокой скоростью, чем если бы он обрабатывал все пространство как единую совместно используемую среду, потому что сигналы для A не будут мешать или перекрываться с информацией, передаваемой в B или C. Совместное использование канала Проблема мультиплексирования в беспроводных сигналах связана с совместным использованием одного канала, как в системах проводных сетей. В решениях, разработанных для совместного использования единой беспроводной среды, преобладают две специфические проблемы: проблема скрытого узла и проблема мощности передачи / приема (которую также иногда называют перегрузкой приемника). На рисунке 8 показана проблема со скрытым узлом. Три круга на рисунке 8 представляют три перекрывающихся диапазона беспроводных передатчиков в точках A, B и C. Если A передает в сторону B, C не может слышать передачу. Даже если C прослушивает свободный канал, A и C могут передавать одновременно, что вызывает конфликт в B. Проблема скрытого узла усугубляется из-за того, что мощность передачи по сравнению с мощностью принятого сигнала, и реальность воздуха как среды. Главное практическое правило для определения мощности радиосигнала в воздухе - сигнал теряет половину своей мощности на каждой длине волны в пространстве, которое он проходит. На высоких частотах сигналы очень быстро теряют свою силу, что означает, что передатчик должен послать сигнал с мощностью на несколько порядков больше, чем его приемник способен принять. Очень сложно создать приемник, способный "слушать" локальный передаваемый сигнал в полную силу, не разрушая приемную схему, а также способный "слышать" сигналы очень низкой мощности, необходимые для расширения диапазона действия устройства. Другими словами, передатчик насыщает приемник достаточной мощностью, чтобы во многих ситуациях "уничтожить" его. Это делает невозможным в беспроводной сети для передатчика прослушивать сигнал во время его передачи и, следовательно, делает невозможным реализацию механизма обнаружения коллизий, используемого в Ethernet (как пример). Механизм, используемый 802.11 для совместного использования одного канала несколькими передатчиками, должен избегать проблем со скрытым каналом и приемником. 802.11 WiFi использует множественный доступ с контролем несущей / предотвращение конфликтов (Carrier Sense Multiple Access/Collision Avoidance -CSMA/CA) для согласования использования канала. CSMA/CA похож на CSMA/CD: Перед передачей отправитель прослушивает сообщение, чтобы определить, передает ли его другое устройство. Если слышна другая передача, отправитель "замирает" на определенный случайный период времени перед повторной попыткой- эта отсрочка предназначена для предотвращения того, чтобы несколько устройств, слышащие одну и ту же передачу, не пытались передать данные одновременно. Если никакой другой передачи не слышно, отправитель передает весь кадр- отправитель не может принять сигнал, который он передает, поэтому в этой точке нет способа обнаружить коллизию. Получатель отправляет подтверждение кадра при получении; если отправитель не получает подтверждения, он предполагает, что произошла коллизия, отключается на случайное количество времени и повторно отправляет кадр. Некоторые системы WiFi также могут использовать Request to Send/Clear to Send (RTS / CTS). В таком случае: Отправитель передает RTS. Когда канал свободен, и никакая другая передача не запланирована, получатель отправляет CTS. Получив CTS, отправитель передает данные Какая система будет обеспечивать более высокую пропускную способность, зависит от количества отправителей и получателей, использующих канал, длины кадров и других факторов. Маршалинг данных, контроль ошибок и управление потоком данных Маршалинг данных в 802.11 аналогичен Ethernet; в каждом пакете есть набор полей заголовка фиксированной длины, за которыми следуют транспортируемые данные и, наконец, четыре октетная Frame Check Sequence (FCS), которая содержит CRC для содержимого пакета. Если получатель может исправить ошибку на основе информации CRC, он это сделает, в противном случае получатель просто не подтверждает получение кадра, что приведет к повторной передаче кадра отправителем. Порядковый номер также включен в каждый кадр, чтобы гарантировать, что пакеты принимаются и обрабатываются в том порядке, в котором они были переданы. Управление потоком обеспечивается в системе RTS / CTS приемником, ожидающим отправки CTS, пока у него не будет достаточно свободного места в буфере для приема нового пакета, чтобы промежуточные системы могли обнаруживать конечные системы; это называется протоколом End System to Intermediate System (ES-IS).
img
Все знают про опцию Follow Me на FreePBX, которая позволяет перенаправить входящий звонок на другое направление, если первоначальный номер, на который звонили, не ответил на звонок в течение какого-то промежутка времени. Например, у нас есть сотрудник с внутренним номером (Extension) 4054, на него приходит звонок, и, если он не берёт трубку в течение 15 секунд, то звонок переадресовывается на мобильный телефон данного сотрудника - 89012345678. Обзор Но что если мы хотим, чтобы входящий звонок сразу шёл на мобильный номер? Предположим, у нас есть IVR, на котором играет такая запись: “Нажмите “1” для связи с отделом технической поддержки, “2” для связи с отделом продаж, “3” если Вы уже являетесь нашим клиентом”. Допустим, что у нас маленькая компания, которая не имеет офисного помещения, и наш “отдел продаж” состоит из одного очень занятого, но очень ответственного менеджера, который постоянно находится в разъездах и использует мобильный телефон для общения с заказчиками. Нам нужно, чтобы клиент, позвонивший в нашу компанию и набравший цифру “2” в IVR, сразу попадал на нашего ответственного менеджера, а звонок, соответственно, сразу шёл ему на мобильный. Решить эту задачу можно с помощью модуля Misc Destinations, который позволяет создавать любые внешние направления, на которые может быть смаршрутизирован вызов. Не стоит путать с Misc Applications. Модуль Misc Destinations работает с любым модулем на FreePBX 13, который может маршрутизировать входящий вызов по какому-либо направлению, включая IVR, Inbound Routes, Time Conditions и другие. Настройка Для того, чтобы попасть в данный модуль, открываем Applications → Misc Destinations, перед нами открывается следующее окно: Для того, чтобы добавить новое направление, кликаем Add Misc Destination, после чего перед нами открываются доступные опции данного модуля: Как видите, параметра для настройки всего два, это: Description - описание данного направления (в нашем случае – Manager’s Cell Phone, т.е – мобильный номер менеджера по продажам); Формат номера должен быть прописан так, как если бы Вы набирали его с телефонного аппарата, зарегистрированного на Вашей IP-АТС, а также убедитесь, что данный формат будет понятен Вашему VoIP провайдеру. Destination - собственно сам номер, на который следует перевести звонок (в нашем случае – это пример мобильного номера); Стоит отметить, что в поле Destination можно также ввести любой внешний номер, это необязательно должен быть мобильный. Кроме того, сюда можно вставить нужный feature code, который запустит работу какой-либо функции. Чтобы закончить настройку, не забудьте нажать Submit и Apply Config. Готово, теперь это внешнее направление можно задействовать в любом другом модуле, который может маршрутизировать вызовы, например - IVR, как показано ниже: В нашем примере, звонок клиента, который дозвонится в нашу компанию, и наберёт цифру “2” в IVR, отправится на номер 89012345678, то есть, на мобильный номер нашего менеджера. Как видите, Misc Destination - это очень простой, но в то же время очень полезный модуль, который поможет сэкономить Вам время, а также решить различные задачи.
img
Сеть 5G появилась относительно недавно, но ученые сейчас во всю проводят исследования над технологией 6G! Что такое 6G? Что можно от него ждать? Давайте обсудим. Концепция 6G 6G – стандарт мобильной связи шестого поколения, является концептуальной технологией мобильной связи беспроводной сети, также известной как технология мобильной связи шестого поколения. Сеть 6G станет технологией с интегрированной наземной беспроводной и спутниковой связью. Благодаря интеграции спутниковой связи в мобильную связь 6G, для обеспечения непрерывного глобального покрытия, сетевые сигналы могут достигать любой удаленной деревни. Кроме того, благодаря глобальной спутниковой системе определения местоположения, телекоммуникационной спутниковой системе, спутниковой системе получения изображений Земли и наземной сети 6G, полный охват земли и воздуха также может помочь людям прогнозировать погоду и быстро реагировать на стихийные бедствия. Разработка 6G В 2018 году Финляндия начала исследовать технологии, связанные с 6G. 9 марта 2018 года министр промышленности и информационных технологий Китайской Народной Республики сообщил, что Китай уже начал исследования 6G. 15 марта 2019 года Федеральная комиссия по связи США (FCC) единогласно проголосовала за принятие решения об открытии спектра «ТГц-волна» для услуг 6G. С 24 по 26 марта 2019 года в Лапландии, Финляндия, состоялась международная конференция по 6G. 20 ноября 2019 года Всемирная конференция 5G 2019 года была проинформирована о том, что China Unicom и China Telecom начали исследование технологий, связанных с 6G. Какие технологии понадобятся для реализации 6G? Терагерцовая технология 6G будет использовать терагерцовый (ТГц) частотный диапазон, и «уплотнение» сетей 6G достигнет беспрецедентного уровня. К тому времени наше окружение будет заполнено небольшими базовыми станциями. Терагерцовая полоса относится к 100 ГГц-10 ТГц, которая является полосой частот, намного превышающей 5 ГГц. От связи 1G (0,9 ГГц) до 4G (выше 1,8 ГГц) частота используемых нами беспроводных электромагнитных волн возрастает. Поскольку чем выше частота, тем больше допустимый диапазон пропускной способности и тем больше объем данных, которые могут быть переданы в единицу времени, что мы обычно просто говорим, что «скорость сети стала быстрее». Итак, когда речь заходит о «уплотнении» сети в эпоху 6G, значит ли это что нас окружат маленькие базовые станции? Вообще говоря, существует множество факторов, которые влияют на покрытие базовой станции, таких как частота сигнала, мощность передачи базовой станции, высота базовой станции и высота мобильного терминала. С точки зрения частоты сигнала, чем выше частота, тем короче длина волны и дифракционная способность сигнала. Частота сигнала 6G уже находится на уровне терагерца, и эта частота близка к спектру энергетического уровня вращения молекулы, и она легко поглощается молекулами воды в воздухе, поэтому расстояние, пройденное в космосе, не так далеко от 5G, поэтому для «ретрансляции» 6G требуется больше базовых станций. Диапазон частот, используемый 5G, выше, чем 4G. Без учета других факторов покрытие базовых станций 5G, естественно, меньше, чем покрытие 4G. При более высокой полосе частот 6G охват базовых станций будет меньше. Технология пространственного мультиплексирования 6G будет использовать «технологию пространственного мультиплексирования», базовые станции 6G смогут одновременно получать доступ к сотням или даже тысячам беспроводных соединений, а его пропускная способность будет в 1000 раз превышать пропускную способность базовых станций 5G. Когда частота сигнала превышает 10 ГГц, его основной режим распространения больше не является дифракционным. Для линий распространения вне прямой видимости отражение и рассеяние являются основными методами распространения сигнала. В то же время, чем выше частота, тем больше потери при распространении, тем короче расстояние покрытия и слабее дифракционная способность. Эти факторы значительно увеличат сложность покрытия сигнала. 5G решает эти проблемы с помощью двух ключевых технологий, Massive MIMO и лучевого формирования. 6G расположен в более высокой полосе частот, и дальнейшее развитие MIMO, вероятно, обеспечит ключевую техническую поддержку для 6G. Как будет выглядеть мир 6G? Итак, когда технология 6G будет полностью развернута, как будет выглядеть мир? Можно предположить, что скорость сети будет быстрее и стабильнее. Предполагается, что в сети 6G загрузка фильмов в несколько ГБ может занять всего пару секунд на скорости в 1 Тбит/с. Конечно, помимо того, что он быстрее 5G, он также будет в полной мере применяться в других развивающихся отраслях благодаря быстрому развитию сети. Например, умные города смогут в режиме реального времени передавать условия дорожного движения и решать проблемы пробок. Такие технологии, как AR, также станут реальностью. Соответствующие исследования предсказывают, что в более позднюю часть эры 5G плотность сетевых подключений, создаваемых устройствами, превысит теоретический предел технологии 5G. Таким образом, ранняя стадия применения 6G заключается в расширении и углублении технологии 5G. Исходя из этого, 6G будет основываться на искусственном интеллекте, периферийных вычислениях и Интернете вещей для достижения глубокой интеграции интеллектуальных приложений и сетей, а затем для разработки виртуальной реальности, виртуальных пользователей, интеллектуальных сетей и других функций. И, хотя отрасль возлагает большие надежды и предположения на 6G, следует признать, что исследования 6G действительно все еще находятся в зачаточном состоянии, и вся отрасль все еще находится в процессе непрерывного развития.
ВЕСЕННИЕ СКИДКИ
40%
50%
60%
До конца акции: 30 дней 24 : 59 : 59